文章目录
前言
线性代数感觉分章节有点割裂的意思了,感觉行列式、矩阵、向量、线形方程组的关系太密切了。做题时也经常能看到这些组合在一起,而且线性代数确实是一门很 a t t r a c t i v e attractive attractive 的课。如果能建立起一些直观感受,比如一个矩阵就代表一种变换等等,相信不仅对考研理解有帮助,对后续数学学习也能有启发。哔哩哔哩上3B1B的《线性代数的本质》合集就是一个很好的学习资料。
一、矩阵的基本概念与特殊矩阵
1.1 基本概念
矩阵
M
a
t
r
i
x
Matrix
Matrix 本质上是一个数表。
如果两个两个矩阵的行数和列数相同,称这两个矩阵为同型矩阵。如果矩阵 A 和矩阵 B 相同位置的元素都相同,称两个矩阵相等,记为
A
=
B
A=B
A=B 。
为矩阵
A
A
A 的伴随矩阵。
对应元素的代数余子式在伴随矩阵中的位置发生了转置。
伴随矩阵一个重要性质是 A A ∗ = A ∗ A = ∣ A ∣ E . AA^*=A^*A=|A|E. AA∗=A∗A=∣A∣E. 是利用矩阵乘法和某行的元素与另一行的代数余子式乘积之和为 0 的性质来证明的。
1.2 特殊矩阵
二、矩阵的运算与性质
2.1 矩阵的三则运算及性质
两个矩阵相加减,则对应元素相加减。
数与矩阵的乘法,矩阵的每个元素都乘上该数。
这个和行列式区分一下,行列式乘上一个数,这个数只能乘到一行或一列。
矩阵与矩阵的乘法,需要保证内标相同,积由原矩阵的外标决定。如 A 100 × 400 B 400 × 200 A_{100\times400}B_{400\times 200} A100×400B400×200 ,乘积的结果为一个 100 × 200 100\times 200 100×200 的矩阵。
矩阵的乘法不满足交换律,其余运算规律均存在。如 A B C = A ( B C ) , A + B + C = A + ( B + C ) , k ( A + B ) = k A + k B . ABC=A(BC),A+B+C=A+(B+C),k(A+B)=kA+kB. ABC=A(BC),A+B+C=A+(B+C),k(A+B)=kA+kB.
两个矩阵均不为零矩阵,但是相乘的结果有可能为零矩阵。而且不为 0 的方阵,它的乘方有可能为零矩阵。
设 A A A 是 m × n m\times n m×n 矩阵, B , C B,C B,C 分别为 n × s , n × l n\times s,n\times l n×s,n×l 矩阵,则有 A ( B ⋮ C ) = ( A B ⋮ A C ) . A(B\vdots C)=(AB \vdots AC). A(B⋮C)=(AB⋮AC).
2.2 矩阵的转置运算及性质
转置运算还是相对好理解些,以下的性质需要掌握理解。
三、矩阵的逆矩阵
3.1 矩阵理论产生的背景
矩阵理论的产生和方程的解有关,我们先来看看一元一次方程的解的情形。
如果把一元一次方程的
a
a
a 变为矩阵
A
m
×
n
A_{m\times n}
Am×n ,那么就会得到一个矩阵方程
A
X
=
b
AX=b
AX=b ,这个方程的解也有两种情形:
(1)
m
=
n
m=n
m=n 时,即
A
A
A 为
n
n
n 阶方阵,且存在
n
n
n 阶矩阵
B
B
B ,使得
B
A
=
E
BA=E
BA=E ,将方程组两边左乘
B
B
B 得
B
A
X
=
B
b
BAX=Bb
BAX=Bb ,可得到
X
=
B
b
X=Bb
X=Bb 。由此引出了关于矩阵的逆矩阵理论。
(2)
m
=
n
m=n
m=n 时,即
A
A
A 为
n
n
n 阶方阵,但不存在
n
n
n 阶矩阵
B
B
B ,使得
B
A
=
E
BA=E
BA=E 。或者
m
≠
n
m \neq n
m=n 时,研究该方程的解的情况需要引入矩阵的秩的理论。
方程组的解的情况在行列式的应用里面就提过了,而方程组的内容还在后面两章。因此线性代数有必要后面专门出一期串联起各个章节的大总结,加深理解和联系。
3.2 逆矩阵的定义
若矩阵 A A A 可逆,则逆矩阵是唯一的。
设 A A A 为 n n n 阶非零矩阵,由 A B = A C AB=AC AB=AC 无法推导出 B = C B=C B=C ,需添加条件 A A A 可逆。
根据产生背景我们知道,在矩阵方程的情形(1)中,逆矩阵是用来求解矩阵方程的。但是在情形(2)中,是有可能找不到 B B B 使得 B A = E BA=E BA=E ,即 A A A 不可逆的。那么该怎么去判断一个矩阵是不是可逆呢?如果判断出了逆矩阵,又如何去求这个逆矩阵呢?我们往后看。
3.3 矩阵可逆的充要条件
定理 设 A A A 是 n n n 阶矩阵,则 A A A 可逆的充分必要条件为 ∣ A ∣ ≠ 0. |A| \neq 0. ∣A∣=0.
证明:对于充分性,若 ∣ A ∣ ≠ 0 |A| \neq 0 ∣A∣=0 ,根据 A ∗ A = ∣ A ∣ E A^*A=|A|E A∗A=∣A∣E ,两边同时除以 ∣ A ∣ |A| ∣A∣ ,有 A ∗ ∣ A ∣ A = E \frac{A^*}{|A|}A=E ∣A∣A∗A=E ,即存在矩阵 B B B ,使得 B A = E BA=E BA=E ,且 A − 1 = B = A ∗ ∣ A ∣ . A^{-1}=B=\frac{A^*}{|A|}. A−1=B=∣A∣A∗. 充分性成立。
对于必要性:若 A A A 可逆,则存在矩阵 B B B ,使得 B A = E BA=E BA=E 。两边取行列式,有 ∣ B ∣ ∣ A ∣ = 1 |B||A|=1 ∣B∣∣A∣=1 ,可知 ∣ A ∣ ≠ 0. |A| \neq 0. ∣A∣=0.
伴随矩阵对于逆矩阵是密切相关的,解题最好能相互联想,下面给出一些伴随矩阵的相关性质。
( A B ) ∗ = ∣ A B ∣ ( A B ) − 1 = ∣ A ∣ ⋅ ∣ B ∣ ⋅ B − 1 A − 1 = ∣ B ∣ B − 1 ⋅ ∣ A ∣ A − 1 = B ∗ A ∗ . (AB)^*=|AB|(AB)^{-1}=|A| \cdot |B| \cdot B^{-1}A^{-1}=|B|B^{-1} \cdot |A|A^{-1}=B^*A^*. (AB)∗=∣AB∣(AB)−1=∣A∣⋅∣B∣⋅B−1A−1=∣B∣B−1⋅∣A∣A−1=B∗A∗.
( A T ) ∗ = ( A ∗ ) T (A^T)^*=(A^*)^T (AT)∗=(A∗)T
( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)∗=kn−1A∗
3.4 逆矩阵的求法
(一)伴随矩阵法
利用公式 A − 1 = A ∗ ∣ A ∣ . A^{-1}=\frac{A^*}{|A|}. A−1=∣A∣A∗. 这个虽然说麻烦,但对于三阶以下的行列式也是可行的。
(二)初等变换法——思想与想法
初等变换思想
这个就有意思了,也正好是我前言里说的,矩阵的本质是一种变换。
对于方程组,我们有如下同解变形,即变形后不影响解的情况。这也是我们在解方程时一般会采取的步骤,消元法之类的。
- 对调两个方程;
- 某个方程两边同时乘以一个非零常数;
- 某个方程的倍数加到另一个方程。
对于矩阵,我们有如下初等变换:
以下称为初等行变换:
- 对调矩阵的两行;
- 矩阵的某行乘以非零常数 k k k;
- 矩阵某行的倍数加到另一行。
以下称为初等列变换:
- 对调矩阵的两列;
- 矩阵的某列乘以非零常数 k k k;
- 矩阵某列的倍数加到另一列。
对于每一个初等变换,都有对应的初等矩阵。初等矩阵为单位阵经过一次初等变换后所得到的矩阵。矩阵
A
A
A 左乘上一个初等矩阵,即对矩阵
A
A
A 做对应的初等行变换。矩阵
A
A
A 右乘上一个初等矩阵,即对矩阵
A
A
A 做对应的初等列变换。
那么,一个矩阵,是否能够经过有限次初等变换变换为单位阵呢?答案是肯定的,这也是初等变换法可行的基础,下面给出两个定理。
定理1 设
A
A
A 为可逆矩阵,则
A
A
A 总能经过一系列初等行变换或一系列初等列变换,变换为单位阵。
定理2 设
A
A
A 为
n
n
n 阶矩阵,则
A
A
A 可逆的充分必要条件是
A
A
A 可以表示为若干个初等矩阵之积。
假设 A A A 经过一系列初等行变换 P 1 , P 2 , ⋯ , P n P_1,P_2,\cdots,P_n P1,P2,⋯,Pn 变换为矩阵 B B B,则有 P 1 , P 2 , ⋯ , P n A = B P_1,P_2,\cdots,P_n A=B P1,P2,⋯,PnA=B ,等价于存在可逆矩阵 P P P ,使得 P A = B PA=B PA=B.
因此,一堆初等矩阵相乘,我们脑海中就把它当成一个可逆矩阵就好。
以上涉及到的矩阵均为方阵,也只有方阵才有可逆理论。关于非方阵的相关理论,放在矩阵的秩的理论一小节。
方法
设
A
A
A 为
n
n
n 阶可逆矩阵,则
(
A
⋮
E
)
(A \vdots E)
(A⋮E) 经过一系列初等行变换可得到
(
E
⋮
A
−
1
)
.
(E \vdots A^{-1}).
(E⋮A−1).
证明:
A
A
A 为可逆矩阵,则有
P
1
P
2
.
.
.
P
n
A
=
E
P_1P_2...P_nA=E
P1P2...PnA=E ,则有
P
1
P
2
.
.
.
P
n
=
A
−
1
P_1P_2...P_n=A^{-1}
P1P2...Pn=A−1 ,等式左边可添加一个单位阵
E
E
E ,即有
P
1
P
2
.
.
.
P
n
E
=
A
−
1
P_1P_2...P_nE=A^{-1}
P1P2...PnE=A−1 ,可说明单位阵经过同样的初等变换
P
1
P
2
.
.
.
P
n
P_1P_2...P_n
P1P2...Pn ,变换为了
A
−
1
A^{-1}
A−1.
这个让我想到我现在在学的线性规划问题的单纯形法,似乎有点相通。
3.5 逆矩阵的性质
写在最后
这部分内容就够喝一壶的啦,暂时先写到这里,后面关于秩的理论,放到后面一篇文章。