【考研数学】线形代数第二章——矩阵(1,基本概念与逆矩阵理论)

本文围绕线性代数中矩阵与逆矩阵展开。介绍了矩阵基本概念、特殊矩阵,阐述矩阵三则运算、转置运算及性质。重点讲解逆矩阵,包括产生背景、定义、可逆充要条件、求法(伴随矩阵法和初等变换法)及性质,还提及与考研及后续数学学习的关联。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

线性代数感觉分章节有点割裂的意思了,感觉行列式、矩阵、向量、线形方程组的关系太密切了。做题时也经常能看到这些组合在一起,而且线性代数确实是一门很 a t t r a c t i v e attractive attractive 的课。如果能建立起一些直观感受,比如一个矩阵就代表一种变换等等,相信不仅对考研理解有帮助,对后续数学学习也能有启发。哔哩哔哩上3B1B的《线性代数的本质》合集就是一个很好的学习资料。

一、矩阵的基本概念与特殊矩阵

1.1 基本概念

矩阵 M a t r i x Matrix Matrix 本质上是一个数表。
在这里插入图片描述
如果两个两个矩阵的行数和列数相同,称这两个矩阵为同型矩阵。如果矩阵 A 和矩阵 B 相同位置的元素都相同,称两个矩阵相等,记为 A = B A=B A=B

在这里插入图片描述
在这里插入图片描述
为矩阵 A A A 的伴随矩阵。

对应元素的代数余子式在伴随矩阵中的位置发生了转置。
伴随矩阵一个重要性质是 A A ∗ = A ∗ A = ∣ A ∣ E . AA^*=A^*A=|A|E. AA=AA=AE. 是利用矩阵乘法和某行的元素与另一行的代数余子式乘积之和为 0 的性质来证明的。

1.2 特殊矩阵

在这里插入图片描述
在这里插入图片描述

二、矩阵的运算与性质

2.1 矩阵的三则运算及性质

两个矩阵相加减,则对应元素相加减。

数与矩阵的乘法,矩阵的每个元素都乘上该数。

这个和行列式区分一下,行列式乘上一个数,这个数只能乘到一行或一列。

矩阵与矩阵的乘法,需要保证内标相同,积由原矩阵的外标决定。如 A 100 × 400 B 400 × 200 A_{100\times400}B_{400\times 200} A100×400B400×200 ,乘积的结果为一个 100 × 200 100\times 200 100×200 的矩阵。

矩阵的乘法不满足交换律,其余运算规律均存在。如 A B C = A ( B C ) , A + B + C = A + ( B + C ) , k ( A + B ) = k A + k B . ABC=A(BC),A+B+C=A+(B+C),k(A+B)=kA+kB. ABC=A(BC),A+B+C=A+(B+C),k(A+B)=kA+kB.

两个矩阵均不为零矩阵,但是相乘的结果有可能为零矩阵。而且不为 0 的方阵,它的乘方有可能为零矩阵。
A A A m × n m\times n m×n 矩阵, B , C B,C B,C 分别为 n × s , n × l n\times s,n\times l n×s,n×l 矩阵,则有 A ( B ⋮ C ) = ( A B ⋮ A C ) . A(B\vdots C)=(AB \vdots AC). A(BC)=(ABAC).

2.2 矩阵的转置运算及性质

在这里插入图片描述
转置运算还是相对好理解些,以下的性质需要掌握理解。
在这里插入图片描述

三、矩阵的逆矩阵

3.1 矩阵理论产生的背景

矩阵理论的产生和方程的解有关,我们先来看看一元一次方程的解的情形。
在这里插入图片描述
如果把一元一次方程的 a a a 变为矩阵 A m × n A_{m\times n} Am×n ,那么就会得到一个矩阵方程 A X = b AX=b AX=b ,这个方程的解也有两种情形:

(1) m = n m=n m=n 时,即 A A A n n n 阶方阵,且存在 n n n 阶矩阵 B B B ,使得 B A = E BA=E BA=E ,将方程组两边左乘 B B B B A X = B b BAX=Bb BAX=Bb ,可得到 X = B b X=Bb X=Bb 。由此引出了关于矩阵的逆矩阵理论。
(2) m = n m=n m=n 时,即 A A A n n n 阶方阵,但不存在 n n n 阶矩阵 B B B ,使得 B A = E BA=E BA=E 。或者 m ≠ n m \neq n m=n 时,研究该方程的解的情况需要引入矩阵的秩的理论。

方程组的解的情况在行列式的应用里面就提过了,而方程组的内容还在后面两章。因此线性代数有必要后面专门出一期串联起各个章节的大总结,加深理解和联系。

3.2 逆矩阵的定义

在这里插入图片描述

若矩阵 A A A 可逆,则逆矩阵是唯一的。
A A A n n n 阶非零矩阵,由 A B = A C AB=AC AB=AC 无法推导出 B = C B=C B=C ,需添加条件 A A A 可逆。

根据产生背景我们知道,在矩阵方程的情形(1)中,逆矩阵是用来求解矩阵方程的。但是在情形(2)中,是有可能找不到 B B B 使得 B A = E BA=E BA=E ,即 A A A 不可逆的。那么该怎么去判断一个矩阵是不是可逆呢?如果判断出了逆矩阵,又如何去求这个逆矩阵呢?我们往后看。

3.3 矩阵可逆的充要条件

定理 A A A n n n 阶矩阵,则 A A A 可逆的充分必要条件为 ∣ A ∣ ≠ 0. |A| \neq 0. A=0.

证明:对于充分性,若 ∣ A ∣ ≠ 0 |A| \neq 0 A=0 ,根据 A ∗ A = ∣ A ∣ E A^*A=|A|E AA=AE ,两边同时除以 ∣ A ∣ |A| A ,有 A ∗ ∣ A ∣ A = E \frac{A^*}{|A|}A=E AAA=E ,即存在矩阵 B B B ,使得 B A = E BA=E BA=E ,且 A − 1 = B = A ∗ ∣ A ∣ . A^{-1}=B=\frac{A^*}{|A|}. A1=B=AA. 充分性成立。

对于必要性:若 A A A 可逆,则存在矩阵 B B B ,使得 B A = E BA=E BA=E 。两边取行列式,有 ∣ B ∣ ∣ A ∣ = 1 |B||A|=1 B∣∣A=1 ,可知 ∣ A ∣ ≠ 0. |A| \neq 0. A=0.

伴随矩阵对于逆矩阵是密切相关的,解题最好能相互联想,下面给出一些伴随矩阵的相关性质。
( A B ) ∗ = ∣ A B ∣ ( A B ) − 1 = ∣ A ∣ ⋅ ∣ B ∣ ⋅ B − 1 A − 1 = ∣ B ∣ B − 1 ⋅ ∣ A ∣ A − 1 = B ∗ A ∗ . (AB)^*=|AB|(AB)^{-1}=|A| \cdot |B| \cdot B^{-1}A^{-1}=|B|B^{-1} \cdot |A|A^{-1}=B^*A^*. (AB)=AB(AB)1=ABB1A1=BB1AA1=BA.
( A T ) ∗ = ( A ∗ ) T (A^T)^*=(A^*)^T (AT)=(A)T
( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)=kn1A

3.4 逆矩阵的求法

(一)伴随矩阵法

利用公式 A − 1 = A ∗ ∣ A ∣ . A^{-1}=\frac{A^*}{|A|}. A1=AA. 这个虽然说麻烦,但对于三阶以下的行列式也是可行的。

(二)初等变换法——思想与想法

初等变换思想
这个就有意思了,也正好是我前言里说的,矩阵的本质是一种变换。
在这里插入图片描述
在这里插入图片描述

对于方程组,我们有如下同解变形,即变形后不影响解的情况。这也是我们在解方程时一般会采取的步骤,消元法之类的。

  1. 对调两个方程;
  2. 某个方程两边同时乘以一个非零常数;
  3. 某个方程的倍数加到另一个方程。

对于矩阵,我们有如下初等变换:
以下称为初等行变换:

  1. 对调矩阵的两行;
  2. 矩阵的某行乘以非零常数 k k k
  3. 矩阵某行的倍数加到另一行。

以下称为初等列变换:

  1. 对调矩阵的两列;
  2. 矩阵的某列乘以非零常数 k k k
  3. 矩阵某列的倍数加到另一列。

对于每一个初等变换,都有对应的初等矩阵。初等矩阵为单位阵经过一次初等变换后所得到的矩阵。矩阵 A A A 左乘上一个初等矩阵,即对矩阵 A A A 做对应的初等行变换。矩阵 A A A 右乘上一个初等矩阵,即对矩阵 A A A 做对应的初等列变换。
在这里插入图片描述
那么,一个矩阵,是否能够经过有限次初等变换变换为单位阵呢?答案是肯定的,这也是初等变换法可行的基础,下面给出两个定理。
定理1 A A A 为可逆矩阵,则 A A A 总能经过一系列初等行变换或一系列初等列变换,变换为单位阵。
定理2 A A A n n n 阶矩阵,则 A A A 可逆的充分必要条件是 A A A 可以表示为若干个初等矩阵之积。

假设 A A A 经过一系列初等行变换 P 1 , P 2 , ⋯   , P n P_1,P_2,\cdots,P_n P1,P2,,Pn 变换为矩阵 B B B,则有 P 1 , P 2 , ⋯   , P n A = B P_1,P_2,\cdots,P_n A=B P1,P2,,PnA=B ,等价于存在可逆矩阵 P P P ,使得 P A = B PA=B PA=B.
因此,一堆初等矩阵相乘,我们脑海中就把它当成一个可逆矩阵就好。
以上涉及到的矩阵均为方阵,也只有方阵才有可逆理论。关于非方阵的相关理论,放在矩阵的秩的理论一小节。

方法
A A A n n n 阶可逆矩阵,则 ( A ⋮ E ) (A \vdots E) (AE) 经过一系列初等行变换可得到 ( E ⋮ A − 1 ) . (E \vdots A^{-1}). (EA1).
证明: A A A 为可逆矩阵,则有 P 1 P 2 . . . P n A = E P_1P_2...P_nA=E P1P2...PnA=E ,则有 P 1 P 2 . . . P n = A − 1 P_1P_2...P_n=A^{-1} P1P2...Pn=A1 ,等式左边可添加一个单位阵 E E E ,即有 P 1 P 2 . . . P n E = A − 1 P_1P_2...P_nE=A^{-1} P1P2...PnE=A1 ,可说明单位阵经过同样的初等变换 P 1 P 2 . . . P n P_1P_2...P_n P1P2...Pn ,变换为了 A − 1 A^{-1} A1.

这个让我想到我现在在学的线性规划问题的单纯形法,似乎有点相通。

3.5 逆矩阵的性质

在这里插入图片描述

在这里插入图片描述

写在最后

这部分内容就够喝一壶的啦,暂时先写到这里,后面关于秩的理论,放到后面一篇文章。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Douglassssssss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值