【考研数学】线形代数第二章——矩阵(2,矩阵秩的理论和矩阵等价)

前言

承接上一篇文章,继逆矩阵理论之后。逆矩阵一般研究的是方阵,行和列数相等。对于行和列不相等的矩阵,秩(Rank)是一个重要的理论。

四、矩阵的秩

4.1 矩阵秩的概念

A A A m × n m\times n m×n 矩阵,矩阵 A A A 中任取 r r r 行和 r r r 列,元素按照原有次序排列构成的 r r r 阶行列式,称为矩阵 A A A r r r 阶子式,矩阵 A A A 共有 C m r C n r C^r_mC_n^r CmrCnr r r r 阶子式。若 A A A 至少有一个 r r r 阶子式不为零,但所有 r + 1 r+1 r+1 阶子式(如果有)皆为零,称 r r r 是矩阵 A A A 的秩,记为 r ( A ) = r . r(A)=r. r(A)=r.

N o t e s : Notes: Notes:

1.设 A A A m × n m\times n m×n 矩阵,根据定义, r ≤ m , r ≤ n r \leq m,r \leq n rm,rn ,即 r ≤ m i n ( m , n ) . r \leq min(m,n). rmin(m,n).

2.设 A A A n n n 阶矩阵,若 A A A 可逆,则有 ∣ A ∣ ≠ 0 |A| \neq 0 A=0 。根据定义,存在 r = n r=n r=n 阶子式不为0,且不存在 n + 1 n+1 n+1 阶子式,因此可逆矩阵 r ( A ) = n r(A)=n r(A)=n ,称 A A A 为满秩矩阵。若 A A A 不可逆,有 ∣ A ∣ = 0 |A| =0 A=0 ,则 r ( A ) < n r(A)<n r(A)<n ,称 A A A 为降秩矩阵。

3.设 A A A n n n 阶矩阵,则 A A A 非奇异、 A A A 满秩、 A A A 可逆等价。

4.对于列向量 α = ( α 1 , α 2 , … , α n ) T \alpha=(\alpha_1,\alpha_2,\dots,\alpha_n)^T α=(α1,α2,,αn)T r ( α ) ≤ 1 r(\alpha) \leq1 r(α)1.若 α ≠ 0 \alpha \neq 0 α=0 ,则 r ( α ) = 1 r(\alpha) =1 r(α)=1 ,否则 r ( α ) = 0. r(\alpha) =0. r(α)=0.

4.2 矩阵秩的求法

若一个矩阵对应为一个方程组的系数矩阵,矩阵的秩则实际上为真正起约束作用的方程的个数,即经过方程组同解变形或矩阵的初等行变换后依然保留下来的方程个数。因此对矩阵进行初等行变换,阶梯化后矩阵的非零行的个数即为矩阵的秩。下面给出一个例子。
在这里插入图片描述

N o t e s : Notes: Notes:

  1. r ( A ) = 0 r(A)=0 r(A)=0 的充要条件是 A = 0. A=0. A=0.
  2. A ≠ 0 A \neq 0 A=0 的充要条件是 r ( A ) ≥ 1. r(A) \geq 1. r(A)1.
  3. r ( A ) ≥ 2 r(A) \geq2 r(A)2 的充要条件是矩阵 A A A 至少两行不成比例。

4.3 矩阵秩的性质

性质 1 r ( A ) = r ( A T ) = r ( A A T ) = r ( A T A ) . r(A)=r(A^T)=r(AA^T)=r(A^TA). r(A)=r(AT)=r(AAT)=r(ATA).

关于秩的问题,出现 A A T AA^T AAT 一般可以利用。

性质 2 A , B A,B A,B 为同型矩阵,则 r ( A ± B ) ≤ r ( A ) + r ( B ) . r(A \pm B)\leq r(A)+r(B). r(A±Br(A)+r(B).

关于秩的问题,出现 A ± B A \pm B A±B 一般可以利用。

性质 3 A A A m × n m\times n m×n 矩阵, B B B n × l n \times l n×l 矩阵,则 r ( A B ) ≤ m i n ( r ( A ) , r ( B ) ) . r(AB) \leq min(r(A),r(B)). r(AB)min(r(A),r(B)).

关于秩的问题,出现 A B AB AB 一般可以利用。
这个性质也告诉我们,两个矩阵相乘,秩只会越来越低。

✨性质 4 A A A m × n m\times n m×n 矩阵, B B B n × l n \times l n×l 矩阵,若 A B = 0 AB=0 AB=0 ,则 r ( A ) + r ( B ) ≤ n . r(A)+r(B) \leq n. r(A)+r(B)n.

关于秩的问题,出现 A B AB AB 一般可以利用。
这个性质用的很多,证明题里面更是经常出现。

性质 5 A A A m × n m \times n m×n 矩阵, P , Q P,Q P,Q 分别为 m , n m,n m,n 阶可逆矩阵,则 r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) . r(A)=r(PA)=r(AQ)=r(PAQ). r(A)=r(PA)=r(AQ)=r(PAQ).
✨性质 6 A A A n n n 阶方阵,则关于 r ( A ∗ ) r(A^*) r(A) 有以下结论:
在这里插入图片描述

证明过程如下:
在这里插入图片描述

关于秩的问题,出现 A ∗ A^* A A i j A_{ij} Aij 时一般可以利用。

在这里插入图片描述

五、矩阵等价

5.1 等价定义

A , B A,B A,B 是两个同型矩阵,若 A A A 经过有限次初等变换为 B B B ,称矩阵 A , B A,B A,B 等价。

由前面的内容,可逆矩阵总可以经过有限次初等变换为单位阵,因此单位阵与任何可逆矩阵等价。

5.2 矩阵等价判别法

定理 1 A , B A,B A,B 是两个同型矩阵,则 A , B A,B A,B 等价的充分必要条件是 r ( A ) = r ( B ) . r(A)=r(B). r(A)=r(B).
定理 2 A , B A,B A,B 是两个同型矩阵,则 A , B A,B A,B 等价的充分必要条件是存在可逆矩阵 P , Q P,Q P,Q ,使得 P A Q = B . PAQ=B. PAQ=B.

定理 2 其实和定义差不太多,主要判别法还是定理 1 。

矩阵是一个重要的线性代数概念,它描述了矩阵中线性无关的最大数量。以下是关于矩阵的一些关键数学性质及其应用: --- ### 矩阵的基本定义与性质 1. **的定义** 对于一个$m \times n$矩阵$A$,其$r(A)$等于该矩阵中线性无关向量或向量的最大数目。 2. **式关** 如果矩阵是非奇异方阵,则它的等于矩阵阶数$n$;若矩阵是奇异的,则其小于$n$。 3. **等式** 设$A_{m\times n}$$B_{n\times p}$为两个矩阵,则有: $$ r(AB) \leq \min(r(A), r(B)) $$ 4. **加法分** 若矩阵可以表示成两部分之的形式,则有: $$ r(A + B) \leq r(A) + r(B) $$ 5. **转置变性** 矩阵与其转置矩阵相等,即: $$ r(A^T) = r(A) $$ 6. **零空间维度的关 (-零化度定理)** 对于任意$m \times n$矩阵$A$,满足以下关: $$ r(A) + \dim(\text{null}(A)) = n $$ --- ### 矩阵的应用场景 1. **线性统求** 在决线性方程组时,可以通过比较矩阵增广矩阵来判断统的是否存在以及是否唯一。 2. **数据压缩与降维** 的概念广泛应用于主成分分析(PCA),用于降低高维数据集的维度同时保留主要特征。 3. **图像处理中的低近似** 图像通常可以用矩阵形式表示,通过对这些矩阵逼近实现去噪平滑效果。 4. **控制理论中的可观测性可控性分析** 控制统设计过程中需要评估状态变量能否被完全观测或者受控,这依赖于特定构造出的矩阵是否有满特性。 --- ### 示例代码展示如何计算矩阵 下面提供一段Python代码演示如何使用NumPy库来计算给定矩阵: ```python import numpy as np # 创建一个示例矩阵 matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 计算矩阵 rank_of_matrix = np.linalg.matrix_rank(matrix) print(f"The rank of the matrix is {rank_of_matrix}") ``` 运结果会显示所创建矩阵的实际数值等级值。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Douglassssssss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值