CF628D Magic Numbers

对于数位dp高精度的处理方式,同此题
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N=2e3+5,MOD=1e9+7;
int m,d,len,ans;
int a[N],dp[N][N];
char l[N],r[N];

int dfs(int x,int sum,int lead,int limit)
{
	if (x==len+1)
	{	
		if (!sum && !lead) return 1;
		return 0;
	}
	if (!lead && !limit && ~dp[x][sum])
	{
		return dp[x][sum];
	}
	int res=0;
	int h;
	if (limit) h=a[x]; else h=9;
	for (register int i=0; i<=h; ++i)
	{
		if (x%2==0 && i!=d) continue;
		if (x%2==1 && i==d) continue;
		res=(res+dfs(x+1,(sum*10+i)%m,(i==0)&&lead,(i==h)&&limit))%MOD;
	}
	if (!limit && !lead) 
	{
		dp[x][sum]=res;
	}
	return res;
}

inline int solve(char s[])
{
	len=strlen(s);
	for (register int i=1; i<=len; ++i) a[i]=s[i-1]-'0';
	return dfs(1,0,1,1);	
}

signed main(){
	memset(dp,-1,sizeof(dp));
	scanf("%lld%lld",&m,&d);
	scanf("%s",l+1);
	scanf("%s",r+1);
	ans=((solve(r+1)-solve(l+1))%MOD+MOD)%MOD;
	bool jay=true;
	int now=0;
	for (register int i=1; i<=len; ++i) 
	{
		a[i]=l[i]-'0';
		if (i%2==0 && a[i]!=d) {jay=false; break;}
		if (i%2==1 && a[i]==d) {jay=false; break;}
		now=(now*10+a[i])%m;
	}
	if (now) jay=false;
	if (jay) ans=(ans+1)%MOD;
	printf("%lld\n",ans);
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值