8.临床预测模型验证——交叉验证/Bootstrap法

基本概念

交叉验证:

将一定比例的数据挑选出来作为训练集,将其余未选中的样本作为测试集,先在训练集中构建模型,再在测试集中做预测。

内部验证:手动将样本随机分为训练集和测试集,先在训练集中构建模型,再在测试集中进行测试。

常用三种方法:

  1. Hold-Out Method 简单交叉验证;
  2. K-fold Cross Validation (K-CV),K折交叉验证;
  3.  Leave-One-Out Cross Validation(LOO-CV),留一法交叉验证,N折交叉验证。

简单交叉验证:

将原始的数据随机分成两组,一组作为训练集,一组作为测试集。

K折交叉验证:

将数据随机分为K个子集,对每个子集分别做一次测试集,其余的K-1组子集数据作为训练集,最终得到K个模型,用K个测试集的平均结果作为K-折交叉验证的性能指标。可以有效避免过度拟合及欠拟合状态的发生,最终得到的结果也比较有说服力。

注意:K一般不小于3

N折交叉验证:

假设原始数据有N个样本,每个样本作为测试集,其余的N-1个样本作为训练集,所以得到N个模型,用N个模型的平均结果作为此留一法交叉验证的性能指标。

相较于K折交叉验证,N折交叉验证的优势:

  1. 每次交叉验证,N-1个样本用于训练模型,接近原始数据分布,结果较为可靠;
  2. 在交叉验证过程中,没有随机因素影响最终结果,结果具有重现性。

外部验证:基于内部数据集建模完成之后,其他独立的研究团队开展的相同研究,其数据集作为外部数据的来源,进行模型的验证。

Bootstrap法

Bootstrap法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值