【容斥+阈值】CC-SEAARC Sereja and Arcs

【题目】
原题地址
题意:给定数轴上n个点,每个点有一个颜色,任意两个同色点可以作为直径画出一个圆,求圆周相交且异色的圆的个数。

【题目分析】
正难则反,反。。。反怎么也这么难。

【解题思路】
以下来自here
可以考虑求补集,因为总数比较容易得到:就是 ∏ i = 1 n ( a i 2 ) \prod_{i=1}^n{a_i\choose 2} i=1n(2ai)
接下来有两种情况: A A B B 和 A B B A AABB和ABBA AABBABBA
前一种情况比较好处理,先求出每种颜色出现了多少次,这样枚举 B l Bl Bl时,我们可以很方便统计出前面所有和 B l Bl Bl异色的圆的个数,再乘上右边同色点出现次数就是它的贡献。是 O ( n ) O(n) O(n)的。

难点在于 A B B A ABBA ABBA的情况,不妨采用阈值的思想,设阈值为 s s s,所有出现次数大于等于 s s s的数为集合 B i g Big Big,小于的为集合 S m a l l Small Small

接下来分类讨论,设四点位置为 l , L , R , r l,L,R,r l,L,R,r,颜色出现次数为 a i a_i ai,颜色 x x x在第 i i i位的前缀出现次数 p r e x , i pre_{x,i} prex,i

A ∈ S m a l l , B ∈ S m a l l A\in Small,B\in Small ASmall,BSmall,,因为点数出现得很少,如果我们枚举一个 r r r,再枚举 l l l,由于扫描中已经满足所有 R &lt; r R&lt;r R<r,那么只需要求出 l &lt; L l&lt;L l<L的方案数,我们用 B I T BIT BIT维护即可。这部分的复杂度是 O ( n ∗ s ∗ l o g n ) O(n*s*logn) O(nslogn)的。

A ∈ B i g , B ∈ S m a l l A\in Big,B\in Small ABig,BSmall,那么我们枚举 L , R L,R L,R以及 A A A的种类,贡献实际上就是 ∑ i = 2 a B ∑ j = 1 i − 1 p r e A , j ∗ ( a A − p r e A , i ) \sum_{i=2}^{a_B}\sum_{j=1}^{i-1} pre_{A,j}*(a_A-pre_{A,i}) i=2aBj=1i1preA,j(aApreA,i),等价于 ∑ i = 2 a B ( a A − p r e A , i ) ∑ j = 1 i − 1 p r e A , j \sum_{i=2}^{a_B}(a_A-pre_{A,i})\sum_{j=1}^{i-1} pre_{A,j} i=2aB(aApreA,i)j=1i1preA,j,在预处理过 ∑ j = 1 i − 1 p r e x , j \sum_{j=1}^{i-1}pre_{x,j} j=1i1prex,j后我们就不用枚举右端点了,复杂度是 O ( n 2 s ) O(\frac {n^2} s) O(sn2)的。

剩下两种情况是 A ∈ S m a l l , B ∈ B i g A\in Small,B\in Big ASmall,BBig A ∈ B i g , B ∈ B i g A\in Big,B\in Big ABig,BBig,这两种情况实际上可以一起考虑。
我们枚举 L , R L,R L,R以及 B B B的种类,那么要求的实际上就是 ∑ i = 2 a A ∑ j = 1 i − 1 ( p r e B , i − p r e B , j 2 ) \sum_{i=2}^{a_A}\sum_{j=1}^{i-1}{pre_{B,i}-pre_{B,j}\choose 2} i=2aAj=1i1(2preB,ipreB,j)。将这个柿子展开我们可以得到一个很复杂的东西: 1 2 ∑ i = 2 a A ( p r e B , i 2 ∗ ( i − 1 ) − 2 ∗ p r e B , i ∑ j = 1 i − 1 p r e B , j + ∑ j = 1 i − 1 p r e B , j 2 + ∑ j = 1 i − 1 p r e B , j + p r e B , i ∗ ( i − 1 ) ) {1\over2} \sum_{i=2}^{a_A}( pre_{B,i}^2*(i-1)-2* pre_{B,i}\sum_{j=1}^{i-1}pre_{B,j}+\sum_{j=1}^{i-1}pre_{B,j}^2+\sum_{j=1}^{i-1}pre_{B,j}+pre_{B,i}*(i-1) ) 21i=2aA(preB,i2(i1)2preB,ij=1i1preB,j+j=1i1preB,j2+j=1i1preB,j+preB,i(i1))
同样可以发现我们预处理出 ∑ j = 1 i − 1 p r e x , j 和 ∑ j = 1 i − 1 p r e x , j 2 \sum_{j=1}^{i-1}pre_{x,j} 和 \sum_{j=1}^{i-1}pre_{x,j}^2 j=1i1prex,jj=1i1prex,j2以后就可以不用枚举右端点了。复杂度同样是 O ( n 2 s ) O(\frac {n^2} s) O(sn2)的。

理论上来说当 s = n log ⁡ n s=\sqrt{n\over \log n} s=lognn 时可以得到最优复杂度 O ( n n log ⁡ n ) O(n\sqrt{n\log n}) O(nnlogn ),但考虑到后两个部分的常数比较大, B I T BIT BIT的常数比较小,我们可以直接取 s = n s=\sqrt n s=n ,大概还是很优秀的。

【参考代码】
写不出来,然后越改越像,最后照着写的(不要打我)。

#include<bits/stdc++.h>
#define lowbit(x) (x&(-x))
#define pb push_back
using namespace std;

typedef long long LL;
const int N=1e5+10,M=333;
const int mod=1e9+7,inv2=(mod+1)>>1;
int n,lim,ans;
int a[N],pre[N],las[N],siz[N],tr[N];
int pr[M][N],sp[M][N],sp2[M][N];
vector<int>c[N],bg;

int read()
{
	int ret=0,f=1;char c=getchar();
	while(!isdigit(c)) {if(c=='-')f=0;c=getchar();}
	while(isdigit(c)) {ret=ret*10+(c^48);c=getchar();}
	return f?ret:-ret;
}

void up(int &x,int y) {x+=y;if(x>=mod)x-=mod;}
int calc(int x) {return (LL)x*(x-1)%mod*inv2%mod;}
void update(int x) {for(;x;x-=lowbit(x)) tr[x]++;}
int query(int l,int r) 
{
	int ret=0;++r;
	for(;l<=n;l+=lowbit(l)) ret+=tr[l];
	for(;r<=n;r+=lowbit(r)) ret-=tr[r];
	return ret;
}

int main()
{
#ifndef ONLINE_JUDGE
	freopen("CC_SEAARC.in","r",stdin);
	freopen("CC_SEAARC.out","w",stdout);
#endif

	n=read();lim=sqrt(n);
	for(int i=1;i<=n;++i) a[i]=read(),c[a[i]].pb(i);
	for(int i=1;i<=n;++i) pre[i]=las[a[i]],las[a[i]]=i;
	
	int res=0;
	for(int i=1;i<N;++i) 
	{
		if(c[i].size()>lim) bg.pb(i);int t=calc(c[i].size());
		up(ans,(LL)res*t%mod);up(res,t);
	}
		
	for(int i=1;i<=n;++i)
	{
		up(res,(mod-(c[a[i]].size()-siz[a[i]]-1))%mod);
		up(ans,mod-(LL)siz[a[i]]*(res+mod-calc(c[a[i]].size()-siz[a[i]]-1))%mod);
		++siz[a[i]];
	}
	
	memset(siz,0,sizeof(siz));
	for(int i=0;i<bg.size();++i)
		for(int j=1;j<=n;++j)
			pr[i][j]=pr[i][j-1]+(a[j]==bg[i]);
			
	for(int i=1;i<=n;++i)
	{
		if(c[a[i]].size()<=lim)
		{
			for(int j=0;c[a[i]][j]<i;++j) up(ans,(mod-query(c[a[i]][j]+1,i)+calc(siz[a[i]]-j-1))%mod),update(c[a[i]][j]);//A in S,B in B
			for(int j=0;j<bg.size();++j)
			{
				sp[i][j]=(sp[pre[i]][j]+pr[j][pre[i]])%mod;
				up(ans,mod-(LL)(c[bg[j]].size()-siz[bg[j]])*sp[i][j]%mod);				
			}//A in Big B in Small
		}
		
		for(int j=0;j<bg.size();++j)
		{
			if(bg[j]==a[i]) continue;
			sp2[i][j]=((LL)pr[j][pre[i]]*pr[j][pre[i]]+sp2[pre[i]][j])%mod;
			LL t1=siz[a[i]]*pr[j][i]%mod*pr[j][i]%mod,t2=(LL)pr[j][i]*sp[i][j]*2%mod,t3=siz[a[i]]*pr[j][i]%mod;
			up(ans,mod-(LL)inv2*(((t1-t2-t3+sp[i][j]+sp2[i][j])%mod+mod)%mod)%mod);
		}//others
		++siz[a[i]];
	}
	printf("%d\n",ans);
	
	return 0;
}

【总结】
主要是阈值的思想(挺难想的),然后就是这个柿子是真的难搞出来- -。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值