【转化DP/多项式exp】LOJ6077 「2017 山东一轮集训 Day7」逆序对

【题目】
LOJ
给定 n , k n,k n,k,求长度为 n n n的排列逆序对数恰好为 k k k的排列个数,对 1 0 9 + 7 10^9+7 109+7取模。 n , k ≤ 1 0 5 n,k\leq 10^5 n,k105

【解题思路】
emmm一眼好像是生成函数?
考虑每次新加进来第 i i i个数的贡献,可能贡献就是 0 ∼ i − 1 0\sim i-1 0i1个逆序对。那么我们就有生成函数:
f ( x ) = 1 × ( 1 + x ) × ( 1 + x + x 2 ) ⋯ = ∏ i = 1 n ( 1 − x i ) ( 1 − x ) n f(x)=1\times (1+x)\times (1+x+x^2)\cdots=\frac {\prod\limits_{i=1}^n (1-x^i)} {(1-x)^n} f(x)=1×(1+x)×(1+x+x2)=(1x)ni=1n(1xi)
多项式 ln \text{ln} ln,可以得到:
l n ( f ( x ) ) = ∑ i = 1 n l n ( 1 − x i ) − n l n ( 1 − x ) ln(f(x))=\sum_{i=1}^{n} {ln(1-x^i)} - nln(1-x) ln(f(x))=i=1nln(1xi)nln(1x)
等等,这个前面这部分怎么做。打表后:
l n ( 1 − x ) = x + 1 2 x 2 + 1 3 x 3 ln(1-x)=x+\frac 1 2 x^2+\frac 1 3 x^3 ln(1x)=x+21x2+31x3
l n ( 1 − x 2 ) = x 2 + 1 2 x 4 + 1 3 x 6 ln(1-x^2)=x^2+\frac 1 2 x^4+\frac 1 3 x^6 ln(1x2)=x2+21x4+31x6
好的啊,这就是一个调和级数了。
然后就是多项式 exp \text{exp} exp一下就可以了,就是要写一会(十分尴尬的是我一开始写出了一个 NTT \text{NTT} NTT???)。
复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn)
我最后并没有卡过去,常数真的这么大吗?还是我写假了?

emmm题解是 DP \text{DP} DP
还是上面那个生成函数,但是分母是可以二项式展开做的,分子的话考虑其意义,可以理解第 i i i项的系数为 1 ∼ n 1\sim n 1n这些数,从中选出 j j j个数使得和为 i i i的方案数再乘上 ( − 1 ) j (-1)^j (1)j

那么我们设 f j , i f_{j,i} fj,i表示选出 j j j个数和为 i i i的方案数,那么第一维是 O ( n ) O(\sqrt n) O(n )级别的,但是由于选出来的 j j j个数不能重复,直接 DP \text{DP} DP并不能做。这个问题可以转化为求长度为 j j j,每个数在 [ 1 , n ] [1,n] [1,n],和为 i i i的上升序列方案数,那么我们就要构造出所有的上升序列。

不妨将上升序列倒序后进行差分,令 b i = a i − a i + 1 b_i=a_i-a_{i+1} bi=aiai+1,那么序列可以表示成 ∑ k = 1 j b k × k \sum_{k=1}^j b_k\times k k=1jbk×k的形式,我们只需要满足 b k > 0 b_k>0 bk>0即可。

这时原问题的 DP \text{DP} DP可以这样表示:

  • i > = j i>=j i>=j,则可以将 b j + + b_j++ bj++,那么 f j , i + = f j , i − j f_{j,i}+=f_{j,i-j} fj,i+=fj,ij;或者可以在 b j b_j bj后面增加一个 1 1 1,那么 f j , i + = f j − 1 , i − j f_{j,i}+=f_{j-1,i-j} fj,i+=fj1,ij
  • i > n i>n i>n,此时可能出现 a a a最后一项 > n >n >n的情况,即 b b b总和 > n >n >n,那么 f j , i − = f j − 1 , i − n − 1 f_{j,i}-=f_{j-1,i-n-1} fj,i=fj1,in1
    最后统计答案,复杂度是 O ( k k ) O(k\sqrt k) O(kk )的。

【参考代码】
DP \text{DP} DP

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N=2e5+10,M=450,mod=1e9+7;
int n,K;
ll fac[N],ifac[N],inv[N],f[M][N];

ll upm(ll x){return x>=mod?x-mod:(x<0?x+mod:x);}
void up(ll &x,ll y){x=upm(x+y);}
ll C(int x,int y){return x<y?0:fac[x]*ifac[y]%mod*ifac[x-y]%mod;}

int main()
{
#ifndef ONLINE_JUDGE
	freopen("LOJ6077.in","r",stdin);
	freopen("LOJ6077.out","w",stdout);
#endif
	scanf("%d%d",&n,&K);
	fac[0]=ifac[0]=inv[0]=fac[1]=ifac[1]=inv[1]=1;
	for(int i=2;i<N;++i) 
		fac[i]=fac[i-1]*i%mod,inv[i]=mod-(mod/i)*inv[mod%i]%mod,ifac[i]=ifac[i-1]*inv[i]%mod;
	f[0][0]=1;
	for(int j=1;j<M;++j) for(int i=j;i<=K;++i)
	{
		if(i>=j) up(f[j][i],f[j][i-j]),up(f[j][i],f[j-1][i-j]);
		if(i>n) up(f[j][i],mod-f[j-1][i-n-1]);
	}
	ll ans=0;
	for(int i=0;i<=K;++i)
	{
		ll res=0;
		for(int j=0;j<M;++j) up(res,((j&1)?-1:1)*f[j][i]);
		up(ans,res*C(K-i+n-1,n-1)%mod);	
	}
	printf("%lld\n",ans);
	return 0;
}

多项式:

#include<bits/stdc++.h>
#define rg register
using namespace std;

typedef long long ll;
typedef long double db;
const int N=4e5+10,M=32767,mod=1e9+7;
const db pi=acos(-1);
int n,K,inv[N];

int upm(int x){return x>=mod?x-mod:(x<0?x+mod:x);}
void up(int &x,int y){x=upm(x+y);}
int mul(int x,int y){return 1ll*x*y%mod;}
int qpow(int x,int y)
{
	int res=1;
	for(;y;y>>=1,x=mul(x,x)) if(y&1) res=mul(res,x);
	return res;
}

namespace Poly
{
	int L,m,rev[N];
	struct cd
	{
		db r,i;
		inline cd(db _r=0,db _i=0):r(_r),i(_i){}
		inline cd operator + (const cd&x){return cd(r+x.r,i+x.i);}
		inline cd operator - (const cd&x){return cd(r-x.r,i-x.i);}
		inline cd operator * (const cd&x){return cd(r*x.r-i*x.i,r*x.i+i*x.r);}
	}A[N],B[N],C[N],D[N];

	inline void getlen(int x){for(m=1;m<2*x;m<<=1);}
	inline void reget(int n)
	{
		for(L=0,m=1;m<2*n;++L,m<<=1);
		for(rg int i=0;i<m;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<(L-1));
	}
	inline void fft(cd *a,int n,int f)
	{
		for(rg int i=0;i<n;++i) if(i<rev[i]) swap(a[i],a[rev[i]]);
		for(rg int i=1;i<n;i<<=1)
		{
			cd wn=cd(cos(pi/i),f*sin(pi/i));
			for(rg int j=0;j<n;j+=i<<1)
			{
				cd w=cd(1,0);
				for(rg int k=0;k<i;++k,w=w*wn)
				{
					cd x=a[j+k],y=w*a[i+j+k];
					a[j+k]=x+y;a[i+j+k]=x-y;
				}
			}
		}
		if(!~f) for(rg int i=0;i<n;++i) a[i].r/=n,a[i].i/=n;
	}
	inline void mtt(int n,int *a,int *b)
	{
		//puts("mtt:");
		//for(rg int i=0;i<n;++i) printf("%d ",a[i]); puts("");
		//for(rg int i=0;i<n;++i) printf("%d ",b[i]); puts("");
		for(rg int i=0;i<n;++i) A[i]=cd(a[i]&M,a[i]>>15),B[i]=cd(b[i]&M,b[i]>>15);
		reget(n);
		fft(A,m,1);fft(B,m,1);
		/*for(rg int i=0;i<m;++i) printf("%d ",(int)(A[i].r+0.5)); puts("");
		for(rg int i=0;i<m;++i) printf("%d ",(int)(B[i].r+0.5)); puts("");
		for(rg int i=0;i<m;++i) printf("%d ",(int)(A[i].i+0.5)); puts("");
		for(rg int i=0;i<m;++i) printf("%d ",(int)(B[i].i+0.5)); puts("");*/
		for(rg int i=0;i<m;++i)
		{
			rg int j=(m-1)&(m-i);
			C[j]=cd(0.5*(A[i].r+A[j].r),0.5*(A[i].i-A[j].i))*B[i];
			D[j]=cd(0.5*(A[i].i+A[j].i),0.5*(A[j].r-A[i].r))*B[i];
		}
		/*printf("!");for(rg int i=0;i<m;++i) printf("%d ",(int)(C[i].r+0.5)); puts("");
		printf("!");for(rg int i=0;i<m;++i) printf("%d ",(int)(D[i].r+0.5)); puts("");
		printf("!");for(rg int i=0;i<m;++i) printf("%d ",(int)(C[i].i+0.5)); puts("");
		printf("!");for(rg int i=0;i<m;++i) printf("%d ",(int)(D[i].i+0.5)); puts("");*/
		fft(C,m,1);fft(D,m,1);
		db tv=1.0000/m;
		for(rg int i=0;i<m;++i) C[i].r*=tv,C[i].i*=tv,D[i].r*=tv,D[i].i*=tv;
		/*printf("!");for(rg int i=0;i<m;++i) printf("%d ",(int)(C[i].r+0.5)); puts("");
		printf("!");for(rg int i=0;i<m;++i) printf("%d ",(int)(D[i].r+0.5)); puts("");
		printf("!");for(rg int i=0;i<m;++i) printf("%d ",(int)(C[i].i+0.5)); puts("");
		printf("!");for(rg int i=0;i<m;++i) printf("%d ",(int)(D[i].i+0.5)); puts("");*/
		for(rg int i=0;i<n;++i) 
		{
			ll a1=C[i].r+0.5,a2=C[i].i+0.5,a3=D[i].r+0.5,a4=D[i].i+0.5;
			b[i]=(a1+((a2+a3)%mod<<15)+(a4%mod<<30))%mod;
		} 
		//for(rg int i=0;i<n;++i) printf("%d ",b[i]); puts("");
		for(rg int i=0;i<m;++i) A[i]=B[i]=C[i]=D[i]=cd(0,0);
	}
	void polyinv(int n,int *a,int *b)//inv a and put into b
	{
		if(n==1){b[0]=qpow(a[0],mod-2);return;}
		polyinv((n+1)>>1,a,b);
		//printf("useinv:");for(rg int i=0;i<n;++i) printf("%d ",a[i]);puts("");
		getlen(n);
		static int c[N]={};
		for(rg int i=0;i<n;++i) c[i]=a[i];
		mtt(n,b,c);mtt(n,b,c);
		for(rg int i=0;i<n;++i) b[i]=(mul(2,b[i])-c[i]+mod)%mod;
		//printf("getinv:");for(rg int i=0;i<n;++i) printf("%d ",b[i]);puts("");
	}
	void polyln(int n,int *a,int *b)//ln a and put into b
	{
		static int d[N]={};
		polyinv(n,a,d);getlen(n);
		//printf("D:");for(rg int i=0;i<n;++i) printf("%d ",d[i]); puts("");
		for(rg int i=0;i<n-1;++i) b[i]=mul(a[i+1],i+1); b[n-1]=0;
		mtt(n,b,d);
		for(rg int i=0;i<n-1;++i) b[i+1]=mul(d[i],inv[i+1]); b[0]=0;
		for(rg int i=n;i<m;++i) b[i]=0;
		//printf("!");for(rg int i=0;i<n;++i) printf("%d ",b[i]);puts("");
	}
	void polyexp(int n,int *a,int *b)
	{
		if(n==1){b[0]=1;return;}
		polyexp((n+1)>>1,a,b);
		static int e[N]={};
		polyln(n,b,e);getlen(n);
		//printf("getln:");for(rg int i=0;i<n;++i) printf("%d ",e[i]);puts("");
		for(rg int i=0;i<n;++i) e[i]=upm(-e[i]+a[i]); e[0]=upm(e[0]+1);
		//printf("getln:");for(rg int i=0;i<n;++i) printf("%d ",e[i]);puts("");
		mtt(n,e,b);
		//printf("getB:");for(rg int i=0;i<n;++i) printf("%d ",b[i]); puts("");
	}
}

namespace DreamLolita
{
	int n1[N],n2[N];
	void solution()
	{
		scanf("%d%d",&n,&K);++K;
		inv[1]=1;for(rg int i=2;i<N;++i)inv[i]=mul(inv[mod%i],mod-mod/i);
		for(rg int i=1;i<=K;++i) n1[i]=mod-mul(n,mod-inv[i]);
		//for(rg int i=0;i<=K;++i) printf("%d ",n1[i]); puts("");
		for(rg int i=1;i<=n;++i) for(rg int j=i,k=1;j<=K;j+=i,++k) up(n1[j],-inv[k]);
		//for(rg int i=0;i<=K;++i) printf("%d ",n1[i]); puts("");
		Poly::polyexp(K,n1,n2);
		printf("%d\n",n2[K-1]);
	}
}

int main()
{
#ifndef ONLINE_JUDGE
	freopen("LOJ6077.in","r",stdin);
	freopen("LOJ6077.out","w",stdout);
#endif
	DreamLolita::solution();
	return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值