【LOJ #6077】「2017 山东一轮集训 Day7」逆序对(生成函数+DP)

传送门

f [ i ] [ j ] f[i][j] f[i][j] i i i个数,逆序对数位 j j j的方案数
显然枚举 i i i放在哪里可以得到 d p dp dp

f [ i ] [ j ] = ∑ k = 0 m i n ( i − 1 , j ) f i − 1 , j − k f[i][j]=\sum_{k=0}^{min(i-1,j)}f_{i-1,j-k} f[i][j]=k=0min(i1,j)fi1,jk
写成生成函数的形式
实际上就是 ∏ i = 0 n − 1 ( ∑ j = 0 i x i ) \prod_{i=0}^{n-1}(\sum_{j=0}^ix^i) i=0n1(j=0ixi)
= ∏ i = 1 n ( 1 − x i ) ( 1 − x ) n =\frac{\prod_{i=1}^{n}(1-x^i)}{(1-x)^n} =(1x)ni=1n(1xi)
1 ( 1 − x ) n \frac{1}{(1-x)^n} (1x)n1的系数很好求
i i i项为 ( i + n − 1 n − 1 ) {i+n-1\choose n-1} (n1i+n1)

考虑上面 ∏ i = 1 n ( 1 − x i ) \prod_{i=1}^{n}(1-x^i) i=1n(1xi)
x n x^n xn系数的组合意义就是从 1 − n 1-n 1n中选 j j j个数使得和为 n n n的方案乘上 ( − 1 ) j (-1)^j (1)j之和

考虑 D P DP DP f [ i ] [ j ] f[i][j] f[i][j]表示选 i i i个数使得和为 j j j的方案
显然选的数的个数 m m m满足 m ∗ ( m + 1 ) ≤ 2 ∗ n m*(m+1)\le 2*n m(m+1)2n
m m m最多就是 450 450 450左右

考虑 d p dp dp选出来的数排序后的差分序列
那么 d p dp dp方式和 小 Y 的 背 包 计 数 问 题 小Y的背包计数问题 Y类似
要么新加入一个 1 1 1,要么给之前每个数加1
注意要减去最后一个数大于了 n n n的情况

复杂度 O ( n n ) O(n\sqrt n) O(nn )

#include<bits/stdc++.h>
using namespace std;
#define cs const
#define re register
#define pb push_back
#define pii pair<int,int>
#define ll long long
#define fi first
#define se second
#define bg begin
cs int RLEN=1<<20|1;
inline char gc(){
    static char ibuf[RLEN],*ib,*ob;
    (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    return (ib==ob)?EOF:*ib++;
}
inline int read(){
    char ch=gc();
    int res=0;bool f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
template<typename tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<typename tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
cs int mod=1e9+7;
inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;}
inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=(r>=mod)?(r%mod):r;}
inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
inline int Inv(int x){return ksm(x,mod-2);}
cs int N=200005;
int fac[N],ifac[N];
inline void init_inv(cs int len=N-5){
	fac[0]=ifac[0]=1;
	for(int i=1;i<=len;i++)fac[i]=mul(fac[i-1],i);
	ifac[len]=Inv(fac[len]);
	for(int i=len-1;i;i--)ifac[i]=mul(ifac[i+1],i+1);
}
inline int C(int n,int m){
	return n<m?0:mul(mul(fac[n],ifac[m]),ifac[n-m]);
}
int m,f[2][100005],s[100005],n,k,cur;
int main(){
	#ifdef Stargazer
	freopen("lx.in","r",stdin);
	#endif
	init_inv();
	n=read(),k=read();
	m=450;
	f[0][0]=1;
	s[0]++;
	for(int i=1;i<=m;i++){
		cur^=1;
		memset(f[cur],0,sizeof(f[cur]));
		for(int j=i;j<=k;j++){
			Add(f[cur][j],add(f[cur][j-i],f[cur^1][j-i]));
			if(j>n)Dec(f[cur][j],f[cur^1][j-n-1]);
		}
		for(int j=i;j<=k;j++){
			if(i&1)Dec(s[j],f[cur][j]);
			else Add(s[j],f[cur][j]);
		}
	}
	int ret=0;
	for(int i=0;i<=k;i++)Add(ret,mul(s[i],C(k-i+n-1,n-1)));
	cout<<ret;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值