设
f
[
i
]
[
j
]
f[i][j]
f[i][j]为
i
i
i个数,逆序对数位
j
j
j的方案数
显然枚举
i
i
i放在哪里可以得到
d
p
dp
dp式
f
[
i
]
[
j
]
=
∑
k
=
0
m
i
n
(
i
−
1
,
j
)
f
i
−
1
,
j
−
k
f[i][j]=\sum_{k=0}^{min(i-1,j)}f_{i-1,j-k}
f[i][j]=∑k=0min(i−1,j)fi−1,j−k
写成生成函数的形式
实际上就是
∏
i
=
0
n
−
1
(
∑
j
=
0
i
x
i
)
\prod_{i=0}^{n-1}(\sum_{j=0}^ix^i)
i=0∏n−1(j=0∑ixi)
=
∏
i
=
1
n
(
1
−
x
i
)
(
1
−
x
)
n
=\frac{\prod_{i=1}^{n}(1-x^i)}{(1-x)^n}
=(1−x)n∏i=1n(1−xi)
1
(
1
−
x
)
n
\frac{1}{(1-x)^n}
(1−x)n1的系数很好求
第
i
i
i项为
(
i
+
n
−
1
n
−
1
)
{i+n-1\choose n-1}
(n−1i+n−1)
考虑上面
∏
i
=
1
n
(
1
−
x
i
)
\prod_{i=1}^{n}(1-x^i)
∏i=1n(1−xi)
中
x
n
x^n
xn系数的组合意义就是从
1
−
n
1-n
1−n中选
j
j
j个数使得和为
n
n
n的方案乘上
(
−
1
)
j
(-1)^j
(−1)j之和
考虑
D
P
DP
DP出
f
[
i
]
[
j
]
f[i][j]
f[i][j]表示选
i
i
i个数使得和为
j
j
j的方案
显然选的数的个数
m
m
m满足
m
∗
(
m
+
1
)
≤
2
∗
n
m*(m+1)\le 2*n
m∗(m+1)≤2∗n
m
m
m最多就是
450
450
450左右
考虑
d
p
dp
dp选出来的数排序后的差分序列
那么
d
p
dp
dp方式和
小
Y
的
背
包
计
数
问
题
小Y的背包计数问题
小Y的背包计数问题类似
要么新加入一个
1
1
1,要么给之前每个数加1
注意要减去最后一个数大于了
n
n
n的情况
复杂度 O ( n n ) O(n\sqrt n) O(nn)
#include<bits/stdc++.h>
using namespace std;
#define cs const
#define re register
#define pb push_back
#define pii pair<int,int>
#define ll long long
#define fi first
#define se second
#define bg begin
cs int RLEN=1<<20|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ib==ob)?EOF:*ib++;
}
inline int read(){
char ch=gc();
int res=0;bool f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
template<typename tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<typename tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
cs int mod=1e9+7;
inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;}
inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=(r>=mod)?(r%mod):r;}
inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
inline int Inv(int x){return ksm(x,mod-2);}
cs int N=200005;
int fac[N],ifac[N];
inline void init_inv(cs int len=N-5){
fac[0]=ifac[0]=1;
for(int i=1;i<=len;i++)fac[i]=mul(fac[i-1],i);
ifac[len]=Inv(fac[len]);
for(int i=len-1;i;i--)ifac[i]=mul(ifac[i+1],i+1);
}
inline int C(int n,int m){
return n<m?0:mul(mul(fac[n],ifac[m]),ifac[n-m]);
}
int m,f[2][100005],s[100005],n,k,cur;
int main(){
#ifdef Stargazer
freopen("lx.in","r",stdin);
#endif
init_inv();
n=read(),k=read();
m=450;
f[0][0]=1;
s[0]++;
for(int i=1;i<=m;i++){
cur^=1;
memset(f[cur],0,sizeof(f[cur]));
for(int j=i;j<=k;j++){
Add(f[cur][j],add(f[cur][j-i],f[cur^1][j-i]));
if(j>n)Dec(f[cur][j],f[cur^1][j-n-1]);
}
for(int j=i;j<=k;j++){
if(i&1)Dec(s[j],f[cur][j]);
else Add(s[j],f[cur][j]);
}
}
int ret=0;
for(int i=0;i<=k;i++)Add(ret,mul(s[i],C(k-i+n-1,n-1)));
cout<<ret;
}