pytorch conv2d参数讲解

本文详细解析PyTorch中Conv2d的参数,包括in_channels、out_channels、kernel_size、stride、padding、dilation、groups和bias。重点讨论dilation如何改变感受域且不增加计算量,以及groups参数对分组卷积的影响。
摘要由CSDN通过智能技术生成

pytorch conv2d参数讲解

"""
	Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the convolution
        kernel_size (int or tuple): Size of the convolving kernel
        stride (int or tuple, optional): Stride of the convolution. Default: 1
        padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
        padding_mode (string, optional). Accepted values `zeros` and `circular` Default: `zeros`
        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
      groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`&
  • 5
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值