有两种方法求最长上升子序列。
HDU OJ 5748 为例:
1:时间复杂度为O(n^2)
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<iostream>
using namespace std;
char a[100001];
int hp[100001];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int i,j,n;
scanf("%d",&n);
for(i=0; i<n; i++)
{
scanf("%d",&a[i]);
}
for(i=0; i<n; i++)
{
hp[i]=1;//初始化为1
for(j=0; j<i; j++)
{
if(a[i]>a[j]&&hp[i]<hp[j]+1)//前一位大于后一位并且hp值大于后一位加一则前一位的hp值等于后一位加一
{
hp[i]=hp[j]+1;
}
}
}
for(i=0; i<n; i++)
{
if(i==0)
{
printf("%d",hp[i]);
}
else
{
printf(" %d ",hp[i]);
}
}
printf("\n");
}
return 0;
}
但是以此方法会超时,所以就要找一种时间复杂度低的方法,所以就出现了用二分的方法求出最长上升子序列
2 时间复杂度O(nlogn)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <stack>
#include <queue>
using namespace std;
const int maxn = 101005;
int a[maxn];
int b[maxn];
int dp[maxn];
int Search(int num,int low,int high)
{
int mid;
while(low<=high)
{
mid = (low+high)/2;
if(num>b[mid]) low = mid+1;
else high = mid-1;
}
return low;
}//用二分的方法找到一个位置,是num>b[i-1],并且num<b[i],并用num代替b[i]
int Dp(int n)
{
int i,len,pos;
b[1] = a[1];
dp[1] = 1;
len = 1;
for(i=2; i<=n; i++)
{
if(a[i]>b[len])
{
len = len+1;
b[len] = a[i];
dp[i] = len;
}
else//用二分的方法在b[]中找出第一个比a[i]大的数字的位置并让a[i]代替这个位置
{
pos = Search(a[i],1,len);
b[pos] = a[i];
dp[i] = pos;
}
}
return len;
}
int main()
{
//freopen("test","r",stdin);
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
Dp(n);
for(int i=1; i<=n; i++)
{
if(i!=n) printf("%d ",dp[i]);
else printf("%d\n",dp[i]);
}
}
return 0;
}