最长上升子序列(单点递增子序列)

有两种方法求最长上升子序列。
HDU OJ 5748 为例:
1:时间复杂度为O(n^2)

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<iostream>
using namespace std;
char a[100001];
int hp[100001];
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int i,j,n;
        scanf("%d",&n);
        for(i=0; i<n; i++)
        {
            scanf("%d",&a[i]);
        }
        for(i=0; i<n; i++)
        {
            hp[i]=1;//初始化为1
            for(j=0; j<i; j++)
            {
                if(a[i]>a[j]&&hp[i]<hp[j]+1)//前一位大于后一位并且hp值大于后一位加一则前一位的hp值等于后一位加一
                {
                    hp[i]=hp[j]+1;
                }
            }
        }
        for(i=0; i<n; i++)
        {
            if(i==0)
            {
               printf("%d",hp[i]);
            }
            else
            {
                printf(" %d ",hp[i]);
            }
        }
         printf("\n");
    }

    return 0;
}

但是以此方法会超时,所以就要找一种时间复杂度低的方法,所以就出现了用二分的方法求出最长上升子序列
2 时间复杂度O(nlogn)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <stack>
#include <queue>
using namespace std;
const int maxn = 101005;
int a[maxn];
int b[maxn];
int dp[maxn];

int Search(int num,int low,int high)
{
    int mid;
    while(low<=high)
    {
        mid = (low+high)/2;
        if(num>b[mid]) low = mid+1;
        else high = mid-1;
    }
    return low;
}//用二分的方法找到一个位置,是num>b[i-1],并且num<b[i],并用num代替b[i]

int Dp(int n)
{
    int i,len,pos;
    b[1] = a[1];
    dp[1] = 1;
    len = 1;
    for(i=2; i<=n; i++)
    {
        if(a[i]>b[len])
        {
            len = len+1;
            b[len] = a[i];
            dp[i] = len;
        }
        else//用二分的方法在b[]中找出第一个比a[i]大的数字的位置并让a[i]代替这个位置
        {
            pos = Search(a[i],1,len);
            b[pos] = a[i];
            dp[i] = pos;
        }

    }
    return len;
}

int main()
{
    //freopen("test","r",stdin);
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n;
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
            scanf("%d",&a[i]);
        Dp(n);
        for(int i=1; i<=n; i++)
        {
            if(i!=n) printf("%d ",dp[i]);
            else printf("%d\n",dp[i]);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值