题目链接、
单测试点时限: 2.0 秒
内存限制: 256 MB
“他觉得一个人奋斗更轻松自在。跟没有干劲的人在一起厮混,只会徒增压力。”
QQ 小方决定一个人研究研究进制转换。
很快,QQ 小方就遇到问题了。他现在想知道在十进制范围 [l,r] 内有多少整数满足在 k 进制下末尾恰好有 m 个 0。
比如在十进制下的 24 在二进制下是 11000,我们称十进制下的 24 在二进制下末尾恰好有 3 个 0。
QQ 小方一筹莫展,你能帮他解决问题吗?
输入
第一行包含一个整数 T (1≤T≤105) 表示数据组数。
对于每组数据包含一行,四个整数 l,r,k,m ( 1≤l≤r≤10^18, 2≤k,m≤100),含义如题目所述。
输出
对于每组数据输出一行,包含一个整数,表示答案。
样例
input
2
1 10 2 3
1 100 2 3
output
1
6
首先来个转化、k进制下末尾恰好有m个0,意思就是说,某个数
能被k^m整除,但是不能被k^(m+1)整除
然后我一看区间1e18,log(1e18)才不到60,询问是1e5,看范围k^m>=4
那,直接每次跳转一个k^m就行了、复杂度6e6,两秒限制呢
if(m*log(k)>log(r))printf("0\n");
else{
ll ans = 0,t1 = Pow(k,m),t2 = Pow(k,m+1);
for(ll i=(l+t1-1)/t1;i<=r;i+=t1)
if(i%t2)
ans++;
}
然后,t了
我:??????
看来只能O(1)内解决了
稍加思索把for改成了这个样子
if(m*log(k)>log(r))printf("0\n");
else{
ll ans = 0,t1 = Pow(k,m),t2 = Pow(k,m+1);
l = (l+t1-1)/t1,r = r/t1;
for(ll i=l;i<=r;i++)
if(i*t1%t2)
ans++;
printf("%lld\n",ans);
}
那么只需要判断什么时候i*t1%t2 == 0就好了
容易看出t1*k%t2 == 0,就是说((k^m)*k)%(k^(m+1)) == 0
可见只要i是k的倍数即可
那么也就是说,答案 = (r-l+1) - (r/k-(l-1)/k)
这就O(1)解决了
还有一个问题,就是ceil函数,我用了之后runtime error 在第21发上、、、
因此,以后还是不用这玩意了、、
#include <bits/stdc++.h>
using namespace std;
typedef unsigned long long ll;
const int maxn = 1e5+7;
ll Pow(ll a,ll b,ll ans = 1){
for(;b;b>>=1,a*=a)if(b&1)ans *= a;
return ans;
}
int t;
signed main(){
scanf("%d",&t);
while(t--){
ll l,r,k,m;
scanf("%lld%lld%lld%lld",&l,&r,&k,&m);
if(m*log(k)>log(r))printf("0\n");
else{
ll ans = 0,t1 = Pow(k,m),t2 = Pow(k,m+1);
l = (l+t1-1)/t1,r = r/t1;
ans = (r-l+1)-(r/k-(l-1)/k);
printf("%lld\n",ans);
}
}
return 0;
}