EOJ Monthly 2019.2 D. 进制转换

题目链接、

 

单测试点时限: 2.0 秒

内存限制: 256 MB

“他觉得一个人奋斗更轻松自在。跟没有干劲的人在一起厮混,只会徒增压力。”

QQ 小方决定一个人研究研究进制转换。

很快,QQ 小方就遇到问题了。他现在想知道在十进制范围 [l,r] 内有多少整数满足在 k 进制下末尾恰好有 m 个 0。

比如在十进制下的 24 在二进制下是 11000,我们称十进制下的 24 在二进制下末尾恰好有 3 个 0。

QQ 小方一筹莫展,你能帮他解决问题吗?

输入

第一行包含一个整数 T (1≤T≤105) 表示数据组数。

对于每组数据包含一行,四个整数 l,r,k,m ( 1≤l≤r≤10^18, 2≤k,m≤100),含义如题目所述。

输出

对于每组数据输出一行,包含一个整数,表示答案。

样例

input

2
1 10 2 3
1 100 2 3

output

1
6

首先来个转化、k进制下末尾恰好有m个0,意思就是说,某个数

能被k^m整除,但是不能被k^(m+1)整除

然后我一看区间1e18,log(1e18)才不到60,询问是1e5,看范围k^m>=4

那,直接每次跳转一个k^m就行了、复杂度6e6,两秒限制呢

if(m*log(k)>log(r))printf("0\n");
else{
    ll ans = 0,t1 = Pow(k,m),t2 = Pow(k,m+1);
    for(ll i=(l+t1-1)/t1;i<=r;i+=t1)
        if(i%t2)
            ans++;
}

然后,t了

我:??????

看来只能O(1)内解决了

稍加思索把for改成了这个样子

        if(m*log(k)>log(r))printf("0\n");
        else{
            ll ans = 0,t1 = Pow(k,m),t2 = Pow(k,m+1);
            l = (l+t1-1)/t1,r = r/t1;
            for(ll i=l;i<=r;i++)
                if(i*t1%t2)
                    ans++;
            printf("%lld\n",ans);
        }

那么只需要判断什么时候i*t1%t2 == 0就好了

容易看出t1*k%t2 == 0,就是说((k^m)*k)%(k^(m+1)) == 0

可见只要i是k的倍数即可

那么也就是说,答案 = (r-l+1) - (r/k-(l-1)/k)

这就O(1)解决了

还有一个问题,就是ceil函数,我用了之后runtime error 在第21发上、、、

因此,以后还是不用这玩意了、、

#include <bits/stdc++.h>
using namespace std;
typedef unsigned long long ll;
const int maxn = 1e5+7;
ll Pow(ll a,ll b,ll ans = 1){
    for(;b;b>>=1,a*=a)if(b&1)ans *= a;
    return ans;
}
int t;
signed main(){
    scanf("%d",&t);
    while(t--){
        ll l,r,k,m;
        scanf("%lld%lld%lld%lld",&l,&r,&k,&m);
        if(m*log(k)>log(r))printf("0\n");
        else{
            ll ans = 0,t1 = Pow(k,m),t2 = Pow(k,m+1);
            l = (l+t1-1)/t1,r = r/t1;
            ans = (r-l+1)-(r/k-(l-1)/k);
            printf("%lld\n",ans);
        }
    }
    return 0;
}

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值