n个人,每k个淘汰。就是经典约瑟夫,没有任何改动。
若问最后一人,有个O(n)的dp,若问每一次淘汰的人数,那么我这里有个O(n*(logk)*logk)的算法。
考虑树状数组优化。
记数组A为这n个人是否被淘汰的标记数组,用树状数组记录前缀和。那么,每次可以二分以快速找到应该淘汰的下表,二分里套树状数组,所以带两个log
pos记录当前位置,容易知道,pos将数组分为两块,若右边的个数小于等于k,说明位于,否则在上。
对k处理一下防止超出范围。来个标准的lower_bound即可。
代码如下
#include<bits/stdc++.h>
//#pragma GCC optimize(2)
using namespace std;
const int maxn = 2e5+7;
int Tree[maxn],n,k;
void Add(int pos,int val){
while(pos<=n){
Tree[pos] += val;
pos += pos&-pos;
}
}
int query(int pos,int Ans = 0){
while(pos){