左偏树

如果把左偏树当一个堆(优先队列)用

那么

​
const int maxn = 1e6+7;
int l[maxn],r[maxn],val[maxn],dis[maxn],tot,root;
int Merge(int x,int y){
    if(!x || !y)return x+y;
    if(val[x]>val[y])swap(x,y);
    r[x] = Merge(r[x],y);
    if(dis[l[x]]<dis[r[x]])swap(l[x],r[x]);
    dis[x] = dis[r[x]]+1;
    return x;
}
void pop(){
    int qwq = root;
    root = Merge(l[root],r[root]);
    l[qwq] = r[qwq] = 0;
}
void Push(int x){
    val[++tot] = x;
    root = Merge(root,tot);
}
int top(){
   return val[root];
}
int Empty(){
    return !root;
}

​

 

其实只用写Merge和pop即可,其他的根本用不到写函数,那么加起来一共14行

当然,在不开o2优化的时候左偏树完爆优先队列,

然而开了o2,左偏树就被打的体无完肤(其实差不多,但是想想优先队列多好写,左偏树还要写14行,空间又大)

当然左偏树空间比较大(因为不知道要用多少节点所以会开一个比较大的数)也是一个问题,就此问题可以加一个数组来模拟栈,起到回收节点的作用,

每次添加节点的时候,如果栈里有点,先从栈里拿,这样可以减少不必要的空间开支, 应用见链接

 

左偏树是一个代码量短,效率高的玩意,其亮点是在于堆的合并上,

 

数据结构插入删除取最小值合并
左偏树O(log(n))O(log(n))O(1)O(log(n))
堆(优先队列)O(log(n))O(log(n))O(1)O(n)

 

 

 

 

至于其他的堆,咱现在还不会

还有啊,据说启发式合并可以将合并给优化到O(log(n)*log(n)),反正还是不如左偏树了

 

贴一个模板

P3377 【模板】左偏树(可并堆)

 

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5+5e4+7;
int Fa[maxn],l[maxn],r[maxn],vl[maxn],dis[maxn],tot;
int Merge(int x,int y){
    if(!x || !y)return x+y;
    if(vl[x]>vl[y] || (vl[x] == vl[y] && x>y))swap(x,y);
    r[x] = Merge(r[x],y);
    if(dis[l[x]]<dis[r[x]])swap(l[x],r[x]);
    dis[x] = dis[r[x]]+1;
    return Fa[l[x]] = Fa[r[x]] = Fa[x] = x;
}
int Find(int x){return x == Fa[x]?x:Fa[x] = Find(Fa[x]);}
void del(int x){
    vl[x] = -1;
    Fa[l[x]] = l[x],Fa[r[x]] = r[x];
    Fa[x] = Merge(l[x],r[x]);
}
int n,t;
int main(){
    scanf("%d%d",&n,&t);
    dis[0] = -1;
    for(int i=1;i<=n;i++)scanf("%d",&vl[i]),Fa[i] = i;
    while(t--){
        int flag,x,y;
        scanf("%d%d",&flag,&x);
        if(flag == 1){
            scanf("%d",&y);
            int F1 = Find(x),F2 = Find(y);
            if(vl[x] == -1 || vl[y] == -1 || F1 == F2)continue;
            Merge(F1,F2);
        }else{
            if(vl[x] == -1)printf("-1\n");
            else printf("%d\n",vl[Find(x)]),del(Find(x));
        }
    }
    return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值