如果把左偏树当一个堆(优先队列)用
那么
const int maxn = 1e6+7;
int l[maxn],r[maxn],val[maxn],dis[maxn],tot,root;
int Merge(int x,int y){
if(!x || !y)return x+y;
if(val[x]>val[y])swap(x,y);
r[x] = Merge(r[x],y);
if(dis[l[x]]<dis[r[x]])swap(l[x],r[x]);
dis[x] = dis[r[x]]+1;
return x;
}
void pop(){
int qwq = root;
root = Merge(l[root],r[root]);
l[qwq] = r[qwq] = 0;
}
void Push(int x){
val[++tot] = x;
root = Merge(root,tot);
}
int top(){
return val[root];
}
int Empty(){
return !root;
}
其实只用写Merge和pop即可,其他的根本用不到写函数,那么加起来一共14行
当然,在不开o2优化的时候左偏树完爆优先队列,
然而开了o2,左偏树就被打的体无完肤(其实差不多,但是想想优先队列多好写,左偏树还要写14行,空间又大)
当然左偏树空间比较大(因为不知道要用多少节点所以会开一个比较大的数)也是一个问题,就此问题可以加一个数组来模拟栈,起到回收节点的作用,
每次添加节点的时候,如果栈里有点,先从栈里拿,这样可以减少不必要的空间开支, 应用见链接
左偏树是一个代码量短,效率高的玩意,其亮点是在于堆的合并上,
数据结构 | 插入 | 删除 | 取最小值 | 合并 |
左偏树 | O(log(n)) | O(log(n)) | O(1) | O(log(n)) |
堆(优先队列) | O(log(n)) | O(log(n)) | O(1) | O(n) |
至于其他的堆,咱现在还不会
还有啊,据说启发式合并可以将合并给优化到O(log(n)*log(n)),反正还是不如左偏树了
贴一个模板
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5+5e4+7;
int Fa[maxn],l[maxn],r[maxn],vl[maxn],dis[maxn],tot;
int Merge(int x,int y){
if(!x || !y)return x+y;
if(vl[x]>vl[y] || (vl[x] == vl[y] && x>y))swap(x,y);
r[x] = Merge(r[x],y);
if(dis[l[x]]<dis[r[x]])swap(l[x],r[x]);
dis[x] = dis[r[x]]+1;
return Fa[l[x]] = Fa[r[x]] = Fa[x] = x;
}
int Find(int x){return x == Fa[x]?x:Fa[x] = Find(Fa[x]);}
void del(int x){
vl[x] = -1;
Fa[l[x]] = l[x],Fa[r[x]] = r[x];
Fa[x] = Merge(l[x],r[x]);
}
int n,t;
int main(){
scanf("%d%d",&n,&t);
dis[0] = -1;
for(int i=1;i<=n;i++)scanf("%d",&vl[i]),Fa[i] = i;
while(t--){
int flag,x,y;
scanf("%d%d",&flag,&x);
if(flag == 1){
scanf("%d",&y);
int F1 = Find(x),F2 = Find(y);
if(vl[x] == -1 || vl[y] == -1 || F1 == F2)continue;
Merge(F1,F2);
}else{
if(vl[x] == -1)printf("-1\n");
else printf("%d\n",vl[Find(x)]),del(Find(x));
}
}
return 0;
}