难度:简单
给定一个整数 n,返回 n! 结果尾数中零的数量。
示例 1:
输入: 3 输出: 0 解释: 3! = 6, 尾数中没有零。示例 2:
输入: 5 输出: 1 解释: 5! = 120, 尾数中有 1 个零.说明: 你算法的时间复杂度应为 O(log n) 。
代码:
class Solution {
public int trailingZeroes(int n) {
//出现10要么就是2*5,要么就是现成的10的倍数
//所以看一下有几个5就可以了(因为可用的2一定比5多)
int count = 0;
while (n / 5 != 0) {
count += n / 5;
n /= 5;
}
return count;
}
}

该博客讨论了一个计算阶乘结果尾部零的算法,其时间复杂度为O(log n)。通过分析因数5的个数来确定零的数量,因为尾部的零是由2和5的乘积产生的,而在阶乘中2的倍数总是多于5的倍数。示例展示了如何计算3!和5!的尾部零数量。
232

被折叠的 条评论
为什么被折叠?



