172. 阶乘后的零

该博客讨论了一个计算阶乘结果尾部零的算法,其时间复杂度为O(log n)。通过分析因数5的个数来确定零的数量,因为尾部的零是由2和5的乘积产生的,而在阶乘中2的倍数总是多于5的倍数。示例展示了如何计算3!和5!的尾部零数量。

难度:简单

给定一个整数 n,返回 n! 结果尾数中零的数量。

示例 1:

输入: 3
输出: 0
解释: 3! = 6, 尾数中没有零。

示例 2:

输入: 5
输出: 1
解释: 5! = 120, 尾数中有 1 个零.

说明: 你算法的时间复杂度应为 O(log n) 

代码:

class Solution {
    public int trailingZeroes(int n) {
        //出现10要么就是2*5,要么就是现成的10的倍数
        //所以看一下有几个5就可以了(因为可用的2一定比5多)
        int count = 0;
        while (n / 5 != 0) {
            count += n / 5;
            n /= 5;
        }
        return count;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值