基于Spark和ALS的大数据图书推荐系统实战:从数据爬取到模型训练再到推荐结果展示

基于spark的图书推荐系统 基于大数据的图书推荐 基于模型的协同过滤图书推荐系统 矩阵分解 ALS推荐(最小二乘法)
数据源:BookCrossing (BX) 数据集由 Cai-Nicolas Ziegler 在 Humankind Systems 首席技术官 Ron Hornbaker 的善意许可下从 Book-Crossing 社区进行为期 4 周的爬行(2004 年 8 月 / 9 月)收集。
它包含 278,858 名用户(匿名但具有人口统计信息),对 271,379 本书提供 1,149,780 个评分(显式/隐式)。
推荐流程:
(1)数据清洗:过滤重复的数据,比如同个书编的书籍信息,评分为0分的不合理信息,将清洗后的数据保存到mysql数据库中
(2)模型训练:从mysql数据库中读取评分数据,通过spark构建模型后填充数据进行模型训练,模型训练后可以保存模型到本地,当有新数据时再重新训练,这个过程可以用采用本地启动spark进行运算也可以将任务提交到spark集群上运算(前提时已搭建好spark集群)
(3)数据推荐:为每个用户推荐20本书,并将推荐结果保存到数据库中
(4)通过springboot搭建一个图书借阅系统展示数据,当新用户在平台借书后归还图书则会增加数据集,触发计算则会有新的推荐结果。

ID:81480692261157726

苹果大大个


基于Spark的图书推荐系统

摘要:本文将介绍基于Spark的图书推荐系统的设计与实现。该系统基于大数据分析技术,并采用基于模型的协同过滤算法,通过矩阵分解和ALS推荐算法对用户的评分数据进行处理和分析,为用户推荐适合其兴趣的图书。文章将围绕数据清洗、模型训练、数据推荐以及系统展示等方面展开详细的分析与讨论。

  1. 引言
    图书推荐系统是利用机器学习和大数据分析技术,根据用户的兴趣和行为,为用户推荐适合其阅读的图书。传统的图书推荐系统主要基于协同过滤算法,但面对海量的图书和用户数据时,算法效率和推荐准确性会面临挑战。因此,本文采用了基于Spark的大数据分析框架,以及基于模型的协同过滤算法,通过矩阵分解和ALS推荐算法提高推荐系统的效率和准确性。

  2. 数据清洗
    在图书推荐系统中,数据清洗是一个非常重要的步骤。本文所使用的数据集是从BookCrossing社区爬取而来的,包含了278,858名用户对271,379本书的1,149,780个评分。为了提高数据质量,我们首先对数据进行去重处理,过滤掉同一本书的多条评分信息。同时,我们也过滤掉评分为0分的不合理信息,确保数据的准确性和完整性。清洗后的数据将被保存到MySQL数据库中,以备后续的模型训练和数据推荐使用。

  3. 模型训练
    在数据清洗完成后,我们将从MySQL数据库中读取评分数据,并利用Spark构建模型进行训练。模型训练过程中,我们采用了矩阵分解和ALS推荐算法,通过对评分矩阵进行分解和填充,得到用户对图书的隐式评分。这样可以更准确地反映用户的兴趣和喜好。为了提高系统的效率,我们可以将任务提交到已搭建好的Spark集群进行运算,也可以在本地启动Spark进行计算,具体选择根据实际情况而定。训练完成后,模型可以保存到本地,并在有新数据时重新训练以保持推荐的准确性。

  4. 数据推荐
    模型训练完成后,我们可以利用训练好的模型为每个用户推荐20本图书。推荐结果将被保存到数据库中,以备后续的展示和查询。推荐算法会根据用户的历史行为和评分数据,为用户推荐对其兴趣度较高的图书。通过矩阵分解和ALS推荐算法,系统可以根据用户的个性化特征和相似用户的行为,推荐适合用户口味的图书。

  5. 图书借阅系统展示
    为了更好地让用户体验和利用图书推荐系统,我们采用Spring Boot搭建了一个图书借阅系统。当新用户在平台借阅图书并归还后,系统会增加新的数据集。这将触发推荐系统的重新计算,从而生成新的推荐结果。通过图书借阅系统的展示,用户可以方便地查询和阅读推荐的图书,提高用户的阅读体验和满意度。

  6. 结论
    本文介绍了基于Spark的图书推荐系统的设计与实现。通过基于模型的协同过滤算法和矩阵分解技术,系统可以高效地对大规模的图书和用户数据进行分析和处理,为用户提供个性化的图书推荐。通过清洗数据、模型训练、数据推荐以及系统展示等步骤的详细分析和讨论,文章旨在为读者提供一个全面且深入的理解,以帮助读者更好地应用和掌握该推荐系统的设计和开发。

关键词:Spark、大数据分析、图书推荐系统、模型训练、数据清洗、矩阵分解、ALS推荐算法、Spring Boot。

【相关代码 程序地址】: http://nodep.cn/692261157726.html

  • 4
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Spark ALS协同过滤推荐系统代码实现的步骤如下: 1. 数据准备:将用户评分数据转换为Spark RDD格式,其中每个元素包含用户ID、物品ID和评分值。 2. 模型训练:使用Spark MLlib中的ALS算法训练模型,设置模型参数,如迭代次数、正则化参数等。 3. 模型评估:使用RMSE或MAE等指标评估模型的性能。 4. 推荐生成:使用训练好的模型,为每个用户生成推荐物品列表。 5. 结果展示:将推荐结果保存到数据库或文件中,并展示给用户。 具体的代码实现可以参考Spark官方文档或相关教程。 ### 回答2: 协同过滤是一种推荐算法,它通过分析用户的行为、偏好和历史数据,找出用户之间的相似性和相似喜好,然后推荐相似用户喜欢的物品。Spark ALS是一种流行的协同过滤推荐算法,它使用ALS(交替最小二乘)来学习用户和物品的潜在特征,并推荐最有可能喜欢的物品。 实现Spark ALS协同过滤推荐系统需要一定的代码实现。以下为实现步骤: 1.准备数据集:首先需要准备一个数据集,包括用户、物品和评分数据数据集可以来自互联网、数据库或其他资源。数据集需要转换为RDD,然后将其拆分成训练集和测试集。 2.构建模型:使用Spark MLlib的ALS算法构建协同过滤模型ALS算法需要配置参数,如潜在因子的数量、正则化参数、迭代次数等。模型还需要训练数据集,学习用户和物品的潜在特征,并估计评分。 3.评估模型:评估模型的性能、准确度和可靠性。使用测试集评估模型对新数据的预测能力,计算均方差和平均绝对误差等指标,来评估模型的优劣。 4.应用模型:最后,使用训练好的模型对新用户和物品进行推荐。通过查找相似用户和物品,并预测他们的评分、喜好,给用户推荐最可能感兴趣的物品。 以上是基于Spark ALS协同过滤推荐系统的代码实现步骤。虽然这个过程可能需要一些学习和经验,但使用Spark ALS协同过滤推荐系统还是相对简单的。实现这个模型可以帮助我们发现用户喜好、增加用户粘性、提高销售额和品牌忠诚度等。 ### 回答3: Apache Spark ALS(Alternating Least Squares)是基于矩阵分解的协同过滤推荐算法,其能够准确地预测用户对物品的评分。在实现ALS推荐系统时,需要以下几个步骤: 1. 数据预处理:将用户物品评分数据转换为Spark能够处理的Rating对象。Rating对象通常由三个属性组成:用户ID、物品ID和评分值。 2. 切分数据集:将数据集划分为训练集和测试集。通常是将80%的数据作为训练集,20%的数据作为测试集。 3. ALS模型训练:使用ALS算法从训练集中训练一个模型训练模型时需要设置参数,如rank、iterations、lambda等等。 4. 评价模型性能:使用测试集对模型进行评价,可以使用RMSE、MAE等指标来评价预测的准确性。 5. 使用模型进行推荐:通过模型预测用户未评分物品的评分值,并根据评分值排序推荐物品给用户。 以下是具体的代码实现: 1. 数据预处理 ```scala import org.apache.spark.ml.recommendation.ALS import org.apache.spark.sql.functions._ // 读取数据 val ratings = spark.read.format("csv") .option("header", "true") .load("ratings.csv") .selectExpr("cast(userId as int) userId", "cast(movieId as int) movieId", "cast(rating as float) rating", "cast(timestamp as long) timestamp") // 转换为Rating对象 val training = ratings.rdd.map(row => org.apache.spark.ml.recommendation.Rating(row.getInt(0), row.getInt(1), row.getFloat(2))) ``` 2. 切分数据集 ```scala val Array(train, test) = training.randomSplit(Array(0.8, 0.2)) ``` 3. ALS模型训练 ```scala // 训练ALS模型 val als = new ALS() .setMaxIter(10) .setRegParam(0.1) .setRank(10) .setUserCol("userId") .setItemCol("movieId") .setRatingCol("rating") val model = als.fit(train) ``` 4. 评价模型性能 ```scala import org.apache.spark.ml.evaluation.RegressionEvaluator // 在测试集上进行评价 val predictions = model.transform(test) val evaluator = new RegressionEvaluator() .setMetricName("rmse") .setLabelCol("rating") .setPredictionCol("prediction") val rmse = evaluator.evaluate(predictions) println(s"Root-mean-square error = $rmse") ``` 5. 使用模型进行推荐 ```scala // 推荐 val recommendations = model.recommendForAllUsers(10) // 将结果存储到文件中 recommendations.write.format("csv") .option("header", "true") .save("output") ``` 以上就是使用Spark ALS实现协同过滤推荐系统的详细步骤和代码实现。Spark ALS推荐算法在海量数据上具有高效性和准确性,能够大大提高推荐系统的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值