InternLM 大模型实战营笔记-2

InternLM 大模型实战营笔记-2

入门岛

第二关 Python基础知识

任务一:python实现 word count

编写单词统计函数如下:

text = """
Got this panda plush toy for my daughter's birthday,
who loves it and takes it everywhere. It's soft and
super cute, and its face has a friendly look. It's
a bit small for what I paid though. I think there
might be other options that are bigger for the
same price. It arrived a day earlier than expected,
so I got to play with it myself before I gave it
to her.
"""

def wordcount(text):
    text = text.lower()
    word_count = {}

    for char in [',','.','\n','!']:
        text = text.replace(char,' ')
    
    words = text.split()

    for word in words:
        if word in word_count:
            word_count[word] += 1
        else:
            word_count[word] = 1

    return word_count

a = wordcount(text)
print(a)

单词统计结果如下:
单词统计结果如下:
在这里插入图片描述

{‘got’: 2, ‘this’: 1, ‘panda’: 1, ‘plush’: 1, ‘toy’: 1, ‘for’: 3, ‘my’: 1, “daughter’s”: 1, ‘birthday’: 1, ‘who’: 1, ‘loves’: 1, ‘it’: 5, ‘and’: 3, ‘takes’: 1, ‘everywhere’: 1, “it’s”: 2, ‘soft’: 1, ‘super’: 1, ‘cute’: 1, ‘its’: 1, ‘face’: 1, ‘has’: 1, ‘a’: 3, ‘friendly’: 1, ‘look’: 1, ‘bit’: 1, ‘small’: 1, ‘what’: 1, ‘i’: 4, ‘paid’: 1, ‘though’: 1, ‘think’: 1, ‘there’: 1, ‘might’: 1, ‘be’: 1, ‘other’: 1, ‘options’: 1, ‘that’: 1, ‘are’: 1, ‘bigger’: 1, ‘the’: 1, ‘same’: 1, ‘price’: 1, ‘arrived’: 1, ‘day’: 1, ‘earlier’: 1, ‘than’: 1, ‘expected’: 1, ‘so’:
1, ‘to’: 2, ‘play’: 1, ‘with’: 1, ‘myself’: 1, ‘before’: 1, ‘gave’: 1, ‘her’: 1}

任务二、在远程开发机上debug单词统计函数
part A
  1. 新建一个python文件:python_debug用来debug

在这里插入图片描述

  1. 设置断点并启动debug
    在这里插入图片描述
part B

在vscode中使用命令行进行debug

  1. 配置一下debug的config,通过remote的方法连接我们在命令行中发起的debug server:点击VSCode侧边栏的“Run and Debug”(运行和调试),单击"create a lauch.json file"
  2. 选择debugger时选择python debuger。选择debug config时选择remote attach就行,随后会让我们选择debug server的地址,因为我们是在本地debug,所以全都保持默认直接回车就可以了,也就是我们的server地址为localhost:5678。
  3. 在命令行发起debug
    python -m debugpy --listen 5678 --wait-for-client ./myscript.py
    4.先在终端中发起debug server,然后再去vscode debug页面单击一下绿色箭头开启debug。
    在这里插入图片描述
  • 11
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
R语言实战笔记第九章介绍了方差分析的内容。方差分析是一种用于比较两个或多个组之间差异的统计方法。在R语言中,可以使用lm函数进行方差分析的回归拟合。lm函数的基本用法是: myfit <- lm(I(Y^(a))~x I(x^2) I(log(x)) var ... [-1],data=dataframe 其中,Y代表因变量,x代表自变量,a代表指数,var代表其他可能对模型有影响的变量。lm函数可以拟合回归模型并提供相关分析结果。 在方差分析中,还需要进行数据诊断,以确保模型的可靠性。其中几个重要的诊断包括异常观测值、离群点和高杠杆值点。异常观测值对于回归分析来说非常重要,可以通过Q-Q图和outlierTest函数来检测。离群点在Q-Q图中表示落在置信区间之外的点,需要删除后重新拟合并再次进行显著性检验。高杠杆值点是指在自变量因子空间中的离群点,可以通过帽子统计量来识别。一般来说,帽子统计量高于均值的2到3倍即可标记为高杠杆值点。 此外,方差分析还需要关注正态性。可以使用car包的qqplot函数绘制Q-Q图,并通过线的位置来判断数据是否服从正态分布。落在置信区间内为优,落在置信区间之外为异常点,需要进行处理。还可以通过绘制学生化残差的直方图和密度图来评估正态性。 综上所述,R语言实战第九章介绍了方差分析及其相关的数据诊断方法,包括异常观测值、离群点、高杠杆值点和正态性检验。这些方法可以用于分析数据的可靠性和模型的适应性。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [R语言实战笔记--第八章 OLS回归分析](https://blog.csdn.net/gdyflxw/article/details/53870535)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值