第一次写线段树hh。
本题很明显要用到线段树,如果不用延迟标记的话(每次更新到叶子节点)更新操作的复杂度就是o(n),用了延迟标记(每次更新到完全覆盖的节点)更新的复杂度就减成了o(logn)。还有一开始的时候一直以为一个节点只能被标记一次,在wa了无数次之后,顺便看了些大牛的模板,才发现一个点可以被标记多次(有个节点多次把它的延迟标记给它的儿子节点,但是它的儿子节点从来没有把延迟标记传给孙子节点,这样它的儿子节点就可能有多层延迟标记),在处理延迟标记的时候一定要考虑被标记多次的情况!!!并且代码中没有记录每个节点区间的左右端点,因为每次可以通过父节点的区间计算出来,然后传递下去。
ac代码如下:
#include <iostream>
#include <cstdlib>
#include <cstdio>
#define lson l, m, k << 1
#define rson m + 1, r, k << 1 | 1
using namespace std;
const int maxn = 100005 << 2;
int sum[maxn], mark[maxn];
void pushup(int x){//在将子节点更新之后,利用子节点的结果把父节点更新
sum[x] = sum[x << 1] + sum[x << 1 | 1];
}
void build(int l, int r, int k){//递归构造线段树
mark[k] = 0;
if (l == r){
sum[k] = 0;
return;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
pushup(k);
}
void pushdown(int k, int len){//把父节点的延迟标记传递给子节点
if (mark[k]){
mark[k << 1] += mark[k];//因为父节点传递给子节点有可能不止一层延迟标记
mark[k << 1 | 1] += mark[k];
if (mark[k] & 1){//父节点每传递给子节点一层标记,说明子节点本应该更新一次却没有更新。
//本题中更新偶数次相当于没有更新,奇数次相当于更新一次,判断条件意思是mark[k]是奇数
sum[k << 1] = (len - (len >> 1)) - sum[k << 1];
sum[k << 1 | 1] = (len >> 1) - sum[k << 1 | 1];
}
mark[k] = 0;
}
}
void update(int l, int r, int k, int L, int R){
if (L <= l && R >= r){//注意判断条件,在用到延迟标记的时候,遇到完全包含的节点时更新截止,并且加上延迟标记
sum[k] = (r - l + 1) - sum[k];
mark[k]++;
return;
}
pushdown(k, r - l + 1);
int m = (l + r) >> 1;
if (L <= m) update(lson, L, R);
if (R > m) update(rson, L, R);
pushup(k);
}
int query(int l,int r, int k, int L, int R){
if (L <= l && R >= r) return sum[k];
pushdown(k, r - l + 1);//刚开始忘了查询的时候也要把更新标记下移
int m = (l + r) >> 1;
int res = 0;
if (L <= m) res += query(lson, L, R);
if (R > m) res += query(rson, L, R);
return res;
}
int main()
{
int n, m;
scanf("%d%d", &n, &m);
build(1, n, 1);
while (m--){
int cmd, a, b;
scanf("%d%d%d", &cmd, &a, &b);
if (cmd) printf("%d\n", query(1, n, 1, a, b));
else update(1, n, 1, a, b);
}
return 0;
}