【机器学习课程笔记(吴恩达)】2.1 模型描述

1.  介绍线性回归

  举例:房价预测,给出一系列数据集(x,y),x表示房间的面积大小,y表示房屋的出售价格,由于价格是连续的数值,所以这是一个回归问题(如果是离散的数值则是分类问题)。

  引申:监督学习的过程,如下图所示,我们向学习算法提供训练集(例如例子中的房价数据),学习算法的任务是输出一个假设函数h, h将x作为输入(如房子的面积),输出相应的预测值y(如房屋的价格)。

  

  在这个例子中我们选择的最初的假设函数h如下:

 

       表示y是x的一个线性函数,即线性回归模型,这个例子是一个一元线性回归,对应单变量线性回归模型。

转载于:https://www.cnblogs.com/AmazingCodeLee/p/9674974.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值