自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(65)
  • 收藏
  • 关注

原创 吴恩达《机器学习》12-4-12-5:核函数 1、核函数 2

当实例与地标距离近时,新特征的值趋近于 1,而当距离较远时,新特征的值趋近于 0。在实际应用中,通过选取不同的地标和核函数,能够构建出更加复杂且适应性强的判定边界,从而提高模型的性能。核函数的选择影响了特征的映射效果,而合适的核函数能够在新的特征空间中更好地划分不同类别。因此,需要一种更有效的方法来构造新的特征。核函数的作用在于将实例的原有特征映射到一个新的空间,从而使得在这个新空间中的判定边界更为有效。相应地,代价函数也需要进行调整,其中对于正则化项的计算引入了一个矩阵 M,该矩阵取决于选择的核函数。

2023-12-15 14:13:34 994

原创 吴恩达《机器学习》12-2-12-3:大边界的直观理解、大边界分类背后的数学

对于正样本(𝑦 = 1),我们希望𝜃^𝑇𝑥的值大于等于 1,而对于负样本(𝑦 = 0),希望𝜃^𝑇𝑥的值小于等于 -1。这一点通过引入一个常数𝐶来体现,当𝐶取非常大的值时,最小化代价函数将迫使𝜃^𝑇𝑥的值趋近于零,即实现最大间距分类器。内积 𝑢^𝑇𝑣 可以通过向量的点乘(𝑢1 × 𝑣1 + 𝑢2 × 𝑣2)或矩阵乘法 ([𝑢1 𝑢2] × [𝑣1, 𝑣2]) 计算。对于二维向量 𝑢 = [𝑢1, 𝑢2],其范数为 ∥𝑢∥ = √(𝑢1^2 + 𝑢2^2)。内积具有交换性,即 𝑢^𝑇𝑣 = 𝑣^𝑇𝑢。

2023-12-14 14:27:01 648

原创 吴恩达《机器学习》12-1:优化目标

支持向量机通过最小化优化目标函数来学习参数,这一目标函数包含了代价函数和正则化项。通过将逻辑回归中的正则化参数 𝜆 替换为 𝐶,我们得到了支持向量机的数学定义。最终,支持向量机的假设函数直接预测 𝑦 的值是 1 还是 0,根据 𝜃^𝑇𝑥 大于或等于 0 的情况。参考资料[中英字幕]吴恩达机器学习系列课程黄海广博士 - 吴恩达机器学习个人笔记。

2023-12-08 14:24:08 540

原创 吴恩达《机器学习》11-3-11-5:类偏斜的误差度量、查准率和查全率之间的权衡、机器学习的数据

即使是一些算法可能被认为是“劣等”的,但通过提供更多的训练数据,它们的性能可能超越一些被认为是“优等”的算法。为了更清晰地理解查准率和查全率,引入了混淆矩阵。查准率表示在所有预测为正例的样本中,实际为正例的比例,而查全率表示在所有实际为正例的样本中,成功预测为正例的比例。这样的研究结果表明,大量的训练数据可以弥补算法的一些不足,甚至在某些情况下,数据的重要性可能超过选择算法的重要性。:Precision = TP/(TP+FP),在所有我们预测有恶性肿瘤的病人中,实际上有恶性肿瘤的病人的百分比,越高越好。

2023-12-06 14:47:43 920

原创 吴恩达《机器学习》11-1-11-2:首先要做什么、误差分析

视频提到的一个示例是构建一个由 100 个最常出现在垃圾邮件中的词构成的列表,根据这些词是否在邮件中出现来创建特征向量,尺寸为 100×1。在这个过程中,对于特征选择、算法设计和下一步的决策,都需要深入思考和明智的选择,而不是凭感觉随意尝试。在接下来的课程中,将介绍误差分析,探讨如何以更系统的方式从各种方法中选择最合适的方法。这种方法能够帮助你在一堆可能的方法中,选择一个真正有效的方法,从而更有可能进行深入研究并取得显著的进展。通过学习曲线,可以了解算法是否存在高偏差和高方差的问题,以及其他可能的缺陷。

2023-12-03 11:01:17 1174

原创 吴恩达《机器学习》10-6-10-7:学习曲线、决定下一步做什么

学习曲线将训练集误差和交叉验证集误差作为训练集实例数量(m)的函数绘制而成。这意味着从较少的数据开始,逐渐增加训练集的实例数量。该方法的核心思想在于,当训练较少数据时,模型可能会完美地适应这些数据,但这并不代表它能够很好地适应交叉验证集或测试集数据。

2023-11-28 18:26:21 1365

原创 吴恩达《机器学习》10-4-10-5:诊断偏差和方差、正则化和偏差/方差

正则化是通过在代价函数中引入额外的惩罚项来实现的,通常有两种形式:L1正则化和L2正则化。这些正则化项对模型参数进行惩罚,鼓励模型使用较小的参数值,从而防止过拟合。

2023-11-25 15:52:12 752

原创 吴恩达《机器学习》10-1-10-3:决定下一步做什么、评估一个假设、模型选择和交叉验证集

然而,即使在了解了这些算法的情况下,仍然存在一些差距,有些人能够高效而有力地运用这些算法,而其他人可能对接下来的步骤感到陌生,不清楚如何正确运用这些知识。在接下来的视频中,我们将学习如何评估机器学习算法的性能,并介绍一些机器学习诊断法,这些方法有助于更深入地了解算法的表现,指导我们选择下一步的改进方法。我们将数据划分为训练集、交叉验证集和测试集,其中分配的百分比通常为 60% 的数据作为训练集,20% 的数据作为交叉验证集,剩下的 20% 作为测试集。有时候,减少特征数量可以提高算法的泛化能力。

2023-11-24 16:49:53 1642

原创 吴恩达《机器学习》9-7-9-8:综合起来、自主驾驶

在神经网络的使用过程中,需要经历一系列步骤,从网络结构的选择到训练过程的实施。

2023-11-22 18:43:01 670 2

原创 吴恩达《机器学习》9-4-9-6:实现注意:展开参数、梯度检验、随机初始化

在检验时,将该矩阵展开成为向量,同时将参数矩阵 𝜃 展开为向量,对每个 𝜃 计算一个近似的梯度值,并将这些值存储于一个近似梯度矩阵中。对于某个特定的参数 𝜃,计算在 𝜃-𝜀 处和 𝜃+𝜀 处的代价值,其中 𝜀 是一个很小的值(通常选取为 0.001),然后求两个代价的平均值,以估计在 𝜃 处的导数。通过随机初始化,打破了对称性,防止了所有参数具有相同初始值的问题,有助于神经网络更好地学习数据的特征,提高了训练的效果。通过梯度检验,能够更加确信我们的梯度计算是正确的,从而提高神经网络训练的可靠性。

2023-11-21 19:17:15 698

原创 吴恩达《机器学习》9-1-9-3:反向传播算法、反向传播算法的直观理解

反向传播算法是为了计算代价函数相对于模型参数的偏导数,以实现权重的更新。与正向传播相反,反向传播采用一种“反向”的方式,从输出层开始计算误差,然后逐层向前传播误差,直到第二层。这确保了能够获取每一层的误差,从而更新权重。具体步骤。

2023-11-19 18:50:15 423

原创 吴恩达《机器学习》9-1:代价函数

通过代价函数,能够观察算法预测结果与实际情况的误差,为调整模型参数提供有力的指导。深入理解神经网络代价函数的结构和作用,有助于更好地理解模型的训练过程和性能评估。首先,引入一些新的标记方法,以便更好地讨论神经网络的代价函数。我们用 L 表示神经网络的层数,这个代价函数考虑了每个样本的每个类别的预测,并通过嵌套的求和来处理不同层的权重。最后一项是正则化项,用于排除每一层的偏置项后,每一层的权重矩阵的平方和。通过惩罚权重矩阵中的大值,可以有效地控制模型的复杂性,提高其泛化能力。表示每层的神经元个数(

2023-11-18 09:58:16 370

原创 吴恩达《机器学习》8-7:多元分类

在机器学习领域,经常会遇到不止两个类别的分类问题。这时,需要使用多类分类技术。本文将深入探讨多类分类,并结合学习内容中的示例,了解神经网络在解决这类问题时的应用。

2023-11-17 14:48:57 760

原创 吴恩达《机器学习》8-5->8-6:特征与直观理解I、样本与值观理解II

以一个三层的神经网络为例,输出层所做的预测利用的是第二层的特征,而不是输入层中的原始特征。因此,可以将第二层中的特征看作是神经网络通过学习后自动生成的一系列新特征,用于更好地预测输出变量。单层神经元,即没有中间层的情况,可以被用来表示逻辑运算,如逻辑与(AND)和逻辑或(OR)。另一个神经元,其三个权重分别为 Θ0=−10,Θ1=20,Θ2=20,可以被视为等同于逻辑或(OR)运算。一个仅含有两个权重的神经元,权重分别为 10 和−20,可以被视为等同于逻辑非(NOT)运算。

2023-11-15 18:50:33 1153

原创 吴恩达《机器学习》8-3->8-4:模型表示I、模型表示II

这包括输入层、隐藏层和输出层。例如,𝑎𝑖(𝑗) 代表第 j 层的第 i 个激活单元,𝜃(𝑗) 代表从第 j 层映射到第 j + 1 层的权重矩阵。这与人类思考的模型相似,其中神经元通过计算将收到的消息传递给其他神经元,也是感觉和肌肉运动的基本原理。具体而言,通过矩阵表示,我们将整个模型的运算过程整合为一个简洁的式子:𝜃 ⋅ 𝑋 = 𝑎。神经网络模型建立在许多神经元之上,每个神经元都是一个个学习模型,也被称为激活单元。我们设计了一个类似于神经元的神经网络,包括输入单元、中间单元和输出单元。

2023-11-12 19:13:57 289

原创 吴恩达《机器学习》8-1->8-2:非线性假设、神经元和大脑

即便我们只采用两两特征的组合(如𝑥₁𝑥₂ + 𝑥₁𝑥₃ + 𝑥₁𝑥₄ + ... + 𝑥₂𝑥₃ + 𝑥₂𝑥₄ + ... + 𝑥₉₉𝑥₁₀₀),也会有接近 5000 个组合而成的特征。大脑具有惊人的学习能力,可以通过看而不是听的方式处理图像,处理触觉,并学习各种不同的事情,包括数学和微积分。在之前学到的线性回归和逻辑回归中,存在一个缺点,即当特征数量很多时,计算的负荷会变得非常大。考虑一个例子,假设我们使用 𝑥₁, 𝑥₂ 的多项式进行预测,这时我们可以很好地应用非线性的多项式项,帮助建立更好的分类模型。

2023-11-11 15:52:58 565

原创 吴恩达《机器学习》7-1->7-4:过拟合问题、代价函数、线性回归的正则化、正则化的逻辑回归模型

而当 λ 较大时,正则化的惩罚力度增强,模型的复杂度降低,更趋向于简单的拟合。其中,X 是输入特征矩阵,y 是输出向量,L 是一个对角矩阵,对角元素为 [0,1,1,...,1][0,1,1,...,1],与 θ0 ​对应的元素为 0。正则化项的引入使得参数更新时,每次都减少一个额外的值,这使得模型更趋向于简单的拟合。通过调整 λ 的值,可以控制正则化的强度,从而影响模型的复杂性和拟合效果。通过调整 λ 的值,我们可以在模型的复杂性和泛化能力之间找到平衡点,防止过拟合的发生。

2023-11-10 14:28:28 1291

原创 PyTorch入门系列教程 — 土堆教程的目录和索引

PyTorch是深度学习领域广泛使用的框架之一,它为深度学习爱好者和研究人员提供了丰富的工具和资源。土堆教程是一系列深入浅出的PyTorch教程,旨在帮助初学者掌握PyTorch的基础知识和高级技巧。本文将为您提供土堆教程的目录及索引,以便您更轻松地找到所需的教程内容。

2023-11-07 16:28:59 84

原创 PyTorch入门学习(十九):完整的模型验证套路

通过以上步骤,可以完整地进行深度学习模型的验证,包括加载图像、进行数据转换、加载模型、执行前向推理和解释结果。这些步骤有助于评估模型的性能和准确性,为实际应用提供有力的支持。现在,可以进行前向推理,将待验证图像输入模型,获得模型的输出。最后,可以解释模型的输出结果。在分类问题中,通常输出是一个概率分布,可以取概率最高的类别作为模型的最终预测。首先,需要加载待验证的图像,并将其转换为模型期望的输入大小和数据类型。在进行模型验证之前,需要加载已经训练好的深度学习模型。

2023-11-07 16:10:35 173

原创 PyTorch入门学习(十八):利用GPU训练

通过这些步骤,您可以充分利用GPU的性能进行深度学习模型的训练,加快训练速度。在训练过程中,不仅模型在GPU上进行前向和反向传播,还能够充分利用GPU资源,提高训练效率。以上是如何在PyTorch中使用GPU进行深度学习模型的训练的全过程。通过合理配置GPU加速,可以更快地训练出高性能的深度学习模型。首先,需要准备训练和测试数据集。数据准备包括数据下载、数据预处理和数据加载。训练过程需要考虑数据、模型、损失函数和优化器都在GPU上。在使用GPU进行模型训练前,需要将模型迁移到GPU上。

2023-11-07 16:02:11 2550

原创 PyTorch入门学习(十七):完整的模型训练套路

在示例代码中,构建了一个名为Tudui的卷积神经网络(CNN)模型。这个模型包括卷积层、池化层和全连接层,用于处理图像分类任务。模型训练分为多轮迭代,每轮包括训练和测试步骤。在训练步骤中,通过反向传播算法更新模型参数,以最小化损失函数。在测试步骤中,我们用测试集验证模型性能。在训练中,需要定义损失函数和优化器。损失函数用于度量模型的输出与真实标签之间的差距,而优化器用于更新模型的参数以减小损失。最后,可以保存训练好的模型,以备后续使用。示例代码展示了两种保存模型的方式,包括保存整个模型和仅保存模型参数。

2023-11-07 15:49:36 158

原创 吴恩达《机器学习》6-4->6-7:代价函数、简化代价函数与梯度下降、高级优化、多元分类:一对多

这个函数的设计使得模型更加关注正确分类的样本,并且对误分类的样本有明显的代价。这些高级优化算法的一个主要优点是,它们通常无需手动选择学习率,因为它们内部使用线性搜索算法来自动选择适当的学习率。这个规则中,𝜃𝑗表示参数向量𝜃的第𝑗个分量,𝛼是学习率,𝑚是训练样本的数量。其中,𝑚表示训练样本的数量,𝑥⁽ⁱ⁾是第𝑖个训练样本,𝑦⁽ⁱ⁾是该样本的实际类别标签(0或1),ℎ𝜃(𝑥⁽ⁱ⁾)是模型的预测概率。梯度下降的目标是最小化代价函数𝐽(𝜃)。:首先,我们需要一个包含多个类别的训练集,每个类别都用不同的数值标识。

2023-11-06 19:03:48 1376 2

原创 PyTorch入门学习(十六):网络模型的保存与读取

在这个示例中,直接修改了VGG16模型的第7个全连接层(索引为6),将其输出维度从4096修改为10。这允许在不改变模型的其他部分的情况下,为新任务创建一个适用的模型。一旦自定义了模型,可能需要将其保存到磁盘以备将来使用,或者加载预训练的模型以进行进一步的微调。通过上述代码,首先创建一个未初始化的VGG16模型,然后加载保存的权重,这样就可以使用已保存的自定义模型了。使用上述代码,将自定义的VGG16模型的权重保存到名为"custom_vgg16.pth"的文件中。

2023-11-06 13:57:04 889

原创 吴恩达《机器学习》6-1->6-3:分类问题、假设陈述、决策界限

在分类问题中,我们试图预测的变量𝑦是离散的值,通常表示某种类别或标签。这些类别可以是二元的,也可以是多元的。判断一封电子邮件是否是垃圾邮件(二元分类)判断一次金融交易是否涉及欺诈(二元分类)区分肿瘤是恶性的还是良性的(二元分类)图像识别:将图像分为不同的类别(多元分类)分类问题在现实世界中无处不在,因此开发有效的分类算法至关重要。逻辑回归是其中一种应用最广泛的分类算法。

2023-11-05 18:55:47 1045

原创 PyTorch入门学习(十五):现有网络模型的使用及修改

例如,如果希望将预训练的VGG16模型用于CIFAR-10数据集,我们需要更改模型的输出层,以便适应CIFAR-10的10个类别。在深度学习中,许多流行的深度学习框架(如PyTorch和TensorFlow)提供了一系列现成的深度学习模型,这些模型经过在大规模数据集上的训练,并可以用于各种计算机视觉任务。如果需要直接修改深度学习模型的结构,例如更改某一层的结构,也可以轻松实现。方法添加了一个新的全连接层,将模型的输出从1000类别转换为10类别。在这个示例中,首先加载了预训练的VGG16模型,然后使用。

2023-11-05 13:47:27 333

原创 吴恩达《机器学习》5-6:向量化

向量化是一种利用线性代数库和数值计算工具来优化代码的方法。它的核心思想是将数据视为向量和矩阵,而不是单个标量值。通过对整个向量或矩阵执行操作,可以实现更快速的计算和更简洁的代码。

2023-11-04 15:23:15 925

原创 PyTorch入门学习(十四):优化器

在上述示例中,使用了SGD,但可以根据需要尝试不同的优化器,以找到最适合的问题的那一个。在上面的代码中,使用 PyTorch 创建了一个名为 Tudui 的神经网络模型,并使用 CIFAR-10 数据集进行训练。在训练过程中,使用了随机梯度下降(SGD)作为优化器来调整模型的参数,以降低交叉熵损失函数的值。PyTorch 是一个流行的深度学习框架,它提供了广泛的工具和库,用于创建、训练和部署深度学习模型。优化器的任务是调整模型参数,以最小化损失函数,从而提高模型的性能。

2023-11-04 15:02:49 599

原创 吴恩达《机器学习》4-6->4-7:正规方程

当存在线性相关的特征时,如 x1 = (3.28)^2 * x2,矩阵X^T * X可能变得奇异或不可逆。如果特征数量n太多,而训练样本数量m相对较少,可能会导致X^T * X不可逆。来计算参数θ,即使特征矩阵X^T * X是不可逆的。求解正规方程,得到最优参数θ:θ = (X^T * X)^(-1) * X^T * y。将梯度为零的方程组转化为矩阵形式:X^T * X * θ = X^T * y。对于特征数量大的情况,计算 (X^T * X)^(-1) 的逆矩阵可能会昂贵。

2023-11-03 21:33:13 574

原创 PyTorch入门学习(十三):损失函数与反向传播

接下来将详细解释提供的代码,并深入探讨交叉熵损失函数、均方误差损失函数以及它们在模型训练中的应用。损失函数是深度学习模型训练的关键组成部分,它定义了模型的性能度量。L1损失是绝对误差损失,它测量了预测值和目标值之间的差异的绝对值之和。这是一种常用于多类别分类问题的损失函数。对于每个样本,它将模型的输出与正确的类别标签进行比较,并计算损失。在代码的后半部分,定义了一个示例输入和目标,并创建了L1损失和均方误差(MSE)损失函数的实例。在循环中,迭代数据加载器中的样本,将输入传递给模型,计算损失,然后使用。

2023-11-03 14:05:37 421

原创 PyTorch入门学习(十二):神经网络-搭建小实战和Sequential的使用

在深度学习领域,构建复杂的神经网络模型可能是一项艰巨的任务,尤其是当您有许多层和操作需要组织时。幸运的是,PyTorch提供了一个方便的工具,称为Sequential API,它简化了神经网络架构的构建过程。接下来将详细讨论您提供的代码,并讨论每个组件,并清楚地了解如何在项目中充分利用PyTorch的Sequential API。在此代码片段中,导入了必要的库,包括PyTorch及其用于神经网络操作的模块,以及用于TensorBoard可视化的SummaryWriter。这简化了代码并增强了其清晰度。

2023-11-02 14:01:14 931

原创 吴恩达《机器学习》4-1->4-5:多变量线性回归

对于每个训练实例,我们使用向量表示特征,如𝑥(𝑖) = [1416, 3, 2, 40],这里 𝑥ⱼ(𝑖) 代表特征矩阵中第 𝑖 行的第 𝑗 个特征,也就是第 𝑖 个训练实例的第 𝑗 个特征。模型的形式可以是像这样的方程:ℎ(𝑥) = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥² + ... + 𝜃𝑛𝑥ⁿ,其中 n 是多项式的次数。它允许引入更高次的特征,以拟合数据的曲线形状。这样,模型中的参数是一个 𝑛 + 1 维的向量,每个训练实例也都是一个 𝑛 + 1 维的向量,特征矩阵 𝑋 的维度是 𝑚 × (𝑛 + 1)。

2023-11-01 18:51:01 1786 2

原创 PyTorch入门学习(十一):神经网络-线性层及其他层介绍

神经网络是由多个层组成的,每一层都包含了一组权重和一个激活函数。每层的作用是将输入数据进行变换,从而最终生成输出。y = Wx + b其中,y 是输出,x 是输入,W 是权重矩阵,b 是偏置。线性层将输入数据与权重矩阵相乘,然后加上偏置,得到输出。线性层的主要作用是进行特征提取和数据的线性组合。

2023-11-01 14:23:30 1532

原创 PyTorch入门学习(十):神经网络-非线性激活

在神经网络中,激活函数的主要目的是引入非线性特性,从而使网络能够对非线性数据建模。如果只使用线性变换,那么整个神经网络就会退化为一个线性模型,因为线性函数的组合仍然是线性的。非线性激活函数通过引入非线性性质,使神经网络能够适应更复杂的数据。

2023-10-31 14:05:33 1110

原创 吴恩达《机器学习》2-5->2-7:梯度下降算法与理解

在梯度下降法中,当我们接近局部最低点时,梯度下降法会自动采取更小的幅度,这是因为当我们接近局部最低点时,很显然在局部最低时导数等于零,所以当我们接近局部最低时,导数值会自动变得越来越小,所以梯度下降将自动采取较小的幅度,这就是梯度下降的做法。批量梯度下降(Batch Gradient Descent)是一种梯度下降的变体,其中在每一次参数更新时,使用整个训练数据集的信息。对于每个参数 𝜃𝑗,计算代价函数 J(𝜃0, 𝜃1, ..., 𝜃𝑛) 对该参数的偏导数,即梯度,表示为 ∂J/∂𝜃𝑗。

2023-10-29 15:11:19 740

原创 PyTorch入门学习(九):神经网络-最大池化使用

在本例中,使用了CIFAR-10数据集,这是一个包含10个不同类别图像的数据集,用于分类任务。最大池化层有助于提取图像中的关键信息,减小图像维度,并提高模型的计算效率。接下来,创建一个简单的神经网络模型,其中包含一个卷积层和一个最大池化层。然后,遍历数据集,对每个批次的图像应用卷积和最大池化操作,并将卷积前后的图像写入TensorBoard。方法中,数据首先经过卷积层,然后通过最大池化层,以减小图像的维度。,并在初始化方法中创建了一个卷积层和一个最大池化层。类,包括了一个卷积层和一个最大池化层。

2023-10-29 14:32:49 624

原创 PyTorch入门学习(八):神经网络-卷积层

这个模型包含一个卷积层,其中设置了输入通道数为3(因为CIFAR-10中的图像是彩色的,有3个通道),卷积核大小为3x3,输出通道数为6,步长为1,填充为0。首先,需要准备一个数据集来演示卷积层的应用。在这个示例中,使用了CIFAR-10数据集,该数据集包含了10个不同类别的图像数据,用于分类任务。遍历数据集,对每个批次的图像应用卷积操作,并将卷积前后的图像以及输入的图像写入TensorBoard。运行上述代码后,将在TensorBoard中看到卷积前后的图像,有助于理解卷积操作对图像的影响。

2023-10-28 14:53:12 655

原创 吴恩达《机器学习》2-2->2-4:代价函数

这个代价函数计算每个样本的建模误差(即预测值与实际值之间的差)的平方,并将所有样本的平方误差求和,然后取平均值。:通过调整模型参数 𝜃0 和 𝜃1,我们的目标是最小化代价函数 𝐽(𝜃0, 𝜃1)。其中,𝐽(𝜃0, 𝜃1) 代表代价函数,𝜃0 和 𝜃1 是模型参数,𝑚 是训练集中的样本数量,ℎ𝜃(𝑥(𝑖)) 是模型的预测值,𝑦(𝑖) 是实际的目标值。:模型的预测值 ℎ𝜃(𝑥) 与实际目标值 𝑦 之间存在差距,这个差距被称为建模误差(modeling error)。代价函数的目标是度量这些建模误差。

2023-10-28 14:38:07 597

原创 吴恩达《机器学习》2-1:模型描述

单变量线性回归是监督学习中的一种算法,通常用于解决回归问题。在单变量线性回归中,我们有一个训练数据集,其中包括一组输入特征(通常表示为𝑥)和相应的输出目标(通常表示为𝑦)。这个算法的目标是学习一个线性函数,通常表示为ℎ𝜃(𝑥),其中𝜃是要学习的参数,以便将输入特征映射到输出目标。单变量线性回归的目标是通过训练数据集学习出最佳的模型参数𝜃0和𝜃1,使得假设ℎ𝜃(𝑥)能够最好地拟合训练数据集中的输入特征和输出目标。一旦学习到了合适的参数,就可以使用模型来进行预测,根据给定的输入特征𝑥,预测相应的输出目标𝑦。

2023-10-27 19:01:03 436

原创 PyTorch入门学习(七):卷积操作

二维卷积是一种用于处理图像数据的操作。它通过卷积核(也称为过滤器)在输入图像上滑动,提取特征信息,用于识别图像中的不同模式和结构。在PyTorch中,可以使用函数执行二维卷积操作。

2023-10-27 12:09:53 125

原创 吴恩达《机器学习》1-4:无监督学习

无监督学习就像你拿到一堆未分类的东西,没有标签告诉你它们是什么,然后你的任务是自己找出它们之间的关系或者分成不同的组,而不依赖于任何人给你关于这些东西的指导。以聚类为例,无监督学习算法可以将数据点分成具有相似特征的群组,而不需要提前告知每个数据点属于哪个群组。将数据集中的对象分成具有相似特征或属性的组,这些组通常称为簇。

2023-10-26 22:11:00 374

场站业务发展报告-论文

场站业务发展论文

2023-11-22

2023年9月C题华为杯

数学建模优秀论文

2023-11-19

嵌入式原理及应用-实验报告

南京邮电大学-嵌入式原理及应用-实验报告

2023-11-11

智能城市规划与建设-课程作业

南京邮电大学-智能城市规划与建设

2023-11-11

市场营销-试卷-期末大作业

南京邮电大学-市场营销-期末试卷

2023-11-11

网络管理理论与实践-实验报告

南京邮电大学-网络管理理论与实践-实验报告

2023-11-09

软件工程理论与实践-期末大作业

南京邮电大学-软件工程理论与实践-期末大作业

2023-11-08

专业英语-课程报告-南邮

南京邮电大学-专业英语-课程报告

2023-11-07

云计算实验报告和期末研究论文

南京邮电大学:云计算-实验报告-期末研究论文

2023-11-06

电子商务期末论文和实验报告

南京邮电大学-电子商务-期末论文-实验报告

2023-11-05

数据结构与算法程序设计-课程设计报告

南京邮电大学-数据结构与算法程序设计-课程设计报告

2023-11-04

生产实习报告-报告与系统

南京邮电大学-生产实习报告

2023-11-03

人工智能概论期末大作业报告

南京邮电大学-人工智能概论期末大作业报告

2023-11-03

Python实验报告:Python和Matlab

南京邮电大学-Python实验报告:Python和Matlab

2023-11-02

网络工程实验报告和大作业

南京邮电大学-网络工程实验报告和大作业

2023-11-02

软件工程理论与实践-实验报告

南京邮电大学-软件工程理论与实践-实验报告

2023-11-01

西北师范大学-计算机考研相关复试资料

西北师范大学-计算机考研相关复试资料

2023-11-01

机器学习(双语)-期末大作业-实验报告-课堂作业

南京邮电大学:机器学习(双语)-期末大作业-实验报告-课堂作业

2023-11-01

基于MATLAB的车牌识别

基于MATLAB的车牌识别

2023-11-01

多媒体技术与应用实验报告

南京邮电大学-多媒体技术与应用实验报告

2023-11-01

考研英语二大小作文模板及套用

在备考考研的过程中积累的珍贵资料,分享多种题材的考研英语二大小作文模板,附带详细套用方法,助您提升写作技能。简明实用。

2023-11-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除