一、题目
1、题目描述
2、输入输出
2.1输入
2.2输出
3、原题链接
二、解题报告
1、思路分析
考虑每个结点最终状态只可能为和P连通或者和S连通
我们我们自然而然的将问题划分为这样的状态
f[x][0]代表结点x和P连通需要割掉最少的边
f[x][1]代表结点x和S连通需要割掉最少的边
如果x是P那么f[x][1] = inf
如果x是S那么f[x][0] = inf
由于每个结点的父节点为编号小于自己的结点,我们倒序遍历,即自底向上转移即可
当然这题也能拿最小割做(逃
2、复杂度
时间复杂度: O(N)空间复杂度:O(N)
3、代码详解
import sys
from math import *
input = lambda: sys.stdin.readline().strip()
MII = lambda: map(int, input().split())
LMI = lambda: list(map(int, input().split()))
I = lambda: int(input())
fmax = lambda x, y: x if x > y else y
fmin = lambda x, y: x if x < y else y
P = 998244353
def solve() -> None:
n = I()
fa = [0] + LMI()
s = input()
f = [[0] * 2 for _ in range(n)]
for i in range(n - 1, -1, -1):
fa[i] -= 1
if s[i] != 'C':
f[i][s[i] == 'P'] = inf
if not i:
break
f[fa[i]][0] += fmin(f[i][0], f[i][1] + 1)
f[fa[i]][1] += fmin(f[i][1], f[i][0] + 1)
print(fmin(f[0][1], f[0][0]))
T = I()
for _ in range(T):
solve()