树形dp,CF 1926 G - Vlad and Trouble at MIT

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

Problem - G - Codeforces


二、解题报告

1、思路分析

考虑每个结点最终状态只可能为和P连通或者和S连通

我们我们自然而然的将问题划分为这样的状态

f[x][0]代表结点x和P连通需要割掉最少的边

f[x][1]代表结点x和S连通需要割掉最少的边

如果x是P那么f[x][1] = inf

如果x是S那么f[x][0] = inf

由于每个结点的父节点为编号小于自己的结点,我们倒序遍历,即自底向上转移即可

当然这题也能拿最小割做(逃

2、复杂度

时间复杂度: O(N)空间复杂度:O(N)

3、代码详解

 ​
import sys
from math import *
input = lambda: sys.stdin.readline().strip()
MII = lambda: map(int, input().split())
LMI = lambda: list(map(int, input().split()))
I = lambda: int(input())
fmax = lambda x, y: x if x > y else y
fmin = lambda x, y: x if x < y else y
P = 998244353

def solve() -> None:
    n = I()
    fa = [0] + LMI()
    s = input()
    f = [[0] * 2 for _ in range(n)]
    for i in range(n - 1, -1, -1):
        fa[i] -= 1
        if s[i] != 'C':
            f[i][s[i] == 'P'] = inf
        if not i:
            break
        f[fa[i]][0] += fmin(f[i][0], f[i][1] + 1)
        f[fa[i]][1] += fmin(f[i][1], f[i][0] + 1)

    print(fmin(f[0][1], f[0][0]))
    
T = I()
for _ in range(T):
    solve()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EQUINOX1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值