目录
一、题目
1、题目描述
2、输入输出
2.1输入
2.2输出
3、原题链接
二、解题报告
1、思路分析
给定 k,如何 check k是否是合法解?
只要每个线段旋转后,在其旋转后的位置仍然有线段存在即可,因为n条线段旋转同样的角度后不重合,所以正确。检查一次为O(M)
对于合法的k,如果k合法,那么2k也合法,3k也合法……
即kx % n 合法
有裴蜀定理可得 ax + bn = gcd(x, n)
那么 k 显然是 n 的因子的倍数,因子数量级是O(log)的,但是我们无法直接得到因子,试除法又太慢了,如何操作?
我们考虑枚举质因子p,然后检查n / p是否合法,由于 n / p一定是n 某个因子的倍数,我们处理所有质因子是很快的,且对于k合法,k的倍数也合法,所以保证了n的每个因子一定能被check或者其倍数一定被check
2、复杂度
时间复杂度: O(mlogn)空间复杂度:O(n)
3、代码详解
#include <bits/stdc++.h>
using i64 = long long;
using i32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
constexpr int inf32 = 1E9 + 7;
constexpr i64 inf64 = 1E18 + 7;
constexpr int P = 998'244'353;
/*
旋转 k 可行,则旋转 kx 也可行
旋转 kx mod n 也可行
ax + bn = gcd(x ,n)
*/
void solve() {
int n, m;
std::cin >> n >> m;
std::set<std::pair<int, int>> st;
std::vector<std::pair<int, int>> segs(m);
for (int i = 0, a, b; i < m; ++ i) {
std::cin >> a >> b;
-- a, -- b;
if (a > b) std::swap(a, b);
st.emplace(a, b);
segs[i] = { a, b };
}
for (int i = 2, t = n; i <= n && t > 1; ++ i) {
if (t % i == 0) {
while (t % i == 0) t /= i;
int x = n / i;
bool ok = true;
for (int j = 0; j < m; ++ j) {
auto [l, r] = segs[j];
int nl = (l + x) % n, nr = (r + x) % n;
if (nl > nr) std::swap(nl, nr);
if (!st.contains(std::pair(nl, nr))) {
ok = false;
break;
}
}
if (ok) {
std::cout << "Yes";
return;
}
}
}
std::cout << "No";
}
auto FIO = []{
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout.tie(nullptr);
return 0;
}();
int main () {
#ifdef DEBUG
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
int T = 1;
// std::cin >> T;
while (T --) {
solve();
}
return 0;
}