数论,CF 1147B - Chladni Figure

目录

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解


一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

B - Chladni Figure


二、解题报告

1、思路分析

给定 k,如何 check k是否是合法解?

只要每个线段旋转后,在其旋转后的位置仍然有线段存在即可,因为n条线段旋转同样的角度后不重合,所以正确。检查一次为O(M)

对于合法的k,如果k合法,那么2k也合法,3k也合法……

即kx % n 合法

有裴蜀定理可得 ax + bn = gcd(x, n)

那么 k 显然是 n 的因子的倍数,因子数量级是O(log)的,但是我们无法直接得到因子,试除法又太慢了,如何操作?

我们考虑枚举质因子p,然后检查n / p是否合法,由于 n / p一定是n 某个因子的倍数,我们处理所有质因子是很快的,且对于k合法,k的倍数也合法,所以保证了n的每个因子一定能被check或者其倍数一定被check

2、复杂度

时间复杂度: O(mlogn)空间复杂度:O(n)

3、代码详解

 ​
#include <bits/stdc++.h>

using i64 = long long;
using i32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

constexpr int inf32 = 1E9 + 7;
constexpr i64 inf64 = 1E18 + 7;
constexpr int P = 998'244'353;

/*
	旋转 k 可行,则旋转 kx 也可行
	旋转 kx mod n 也可行

	ax + bn = gcd(x ,n)
*/

void solve() {
	int n, m;
	std::cin >> n >> m;

	std::set<std::pair<int, int>> st;
	std::vector<std::pair<int, int>> segs(m);

	for (int i = 0, a, b; i < m; ++ i) {
		std::cin >> a >> b;
		-- a, -- b;
		if (a > b) std::swap(a, b);
		st.emplace(a, b);
		segs[i] = { a, b };
	}

	for (int i = 2, t = n; i <= n && t > 1; ++ i) {
		if (t % i == 0) {
			while (t % i == 0) t /= i;
			int x = n / i;
			bool ok = true;
			for (int j = 0; j < m; ++ j) {
				auto [l, r] = segs[j];
				int nl = (l + x) % n, nr = (r + x) % n;
				if (nl > nr) std::swap(nl, nr);
				if (!st.contains(std::pair(nl, nr))) {
					ok = false;
					break;
				}
			}
			if (ok) {
				std::cout << "Yes";
				return;
			}
		}
	}

	std::cout << "No";
}

auto FIO = []{
	std::ios::sync_with_stdio(false);
	std::cin.tie(nullptr);
	std::cout.tie(nullptr);
	return 0;
}();

int main () {
	#ifdef DEBUG
		freopen("in.txt", "r", stdin);
		freopen("out.txt", "w", stdout);
	#endif
	
	int T = 1;
	// std::cin >> T;
	while (T --) {
		solve();
	}

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EQUINOX1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值