初等数论--整除--两数乘积保持整除性

这篇博客深入探讨了初等数论中的整除性质,特别是当两个数分别整除同一个数时,它们的乘积也整除该数的原理。此外,还阐述了如何从m和n整除r推导出[m,n](最小公倍数)整除r的过程,强调了最大公约数和最小公倍数的概念及其相互关系。内容适合初学者巩固数论基础。
摘要由CSDN通过智能技术生成

博主本人是初学初等数论(整除+同余+原根),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:初等数论,方便检索。

m ∣ r , n ∣ r , ( m , n ) = 1 → m n ∣ r m\mid r,n\mid r,(m,n)=1\rightarrow mn\mid r mr,nr,(m,n)=1mnr

m ∣ r → r = p m m\mid r\rightarrow r=pm mrr=pm
n ∣ r → r = q n n\mid r\rightarrow r=qn nrr=qn

  • r = p m = q n → m ∣ q n r=pm=qn\rightarrow m\mid qn r=pm=qnmqn

m ∣ q n m\mid qn mqn
m ( m , n ) ∣ q n ( m , n ) \frac{m}{(m,n)}\mid q\frac{n}{(m,n)} (m,n)mq(m,n)n
m ( m , n ) ∣ q \frac{m}{(m,n)}\mid q (m,n)mq
因为 ( m , n ) = 1 (m,n)=1 (m,n)=1
m ∣ q m\mid q mq
q = a m , a ∈ Z q=am,a\in \mathbb{Z} q=am,aZ
r = q n = a m n , a ∈ Z r=qn=amn,a\in \mathbb{Z} r=qn=amn,aZ
m n ∣ r mn\mid r mnr

m ∣ r , n ∣ r → [ m , n ] ∣ r m\mid r,n\mid r\rightarrow [m,n]\mid r mr,nr[m,n]r

[ m , n ] = l c m ( m , n ) [m,n]=lcm(m,n) [m,n]=lcm(m,n) 最小公倍数
( m , n ) = g c d ( m , n ) (m,n)=gcd(m,n) (m,n)=gcd(m,n) 最大公因数
m n = [ m , n ] ⋅ ( m , n ) ⇒ [ m , n ] = m n ( m , n ) mn=[m,n]\cdot (m,n)\Rightarrow[m,n]=\frac{mn}{(m,n)} mn=[m,n](m,n)[m,n]=(m,n)mn

因为 n ∣ r n\mid r nr,所以 r = q n r=qn r=qn
因为 m ∣ r m\mid r mr,所以
m ∣ q n m\mid qn mqn
⇒ m ( m , n ) ∣ q n ( m , n ) \Rightarrow \frac{m}{(m,n)}\mid \frac{qn}{(m,n)} (m,n)m(m,n)qn
⇒ m ( m , n ) ∣ q \Rightarrow\frac{m}{(m,n)}\mid q (m,n)mq
⇒ m n ( m , n ) ∣ q n \Rightarrow \frac{mn}{(m,n)}\mid qn (m,n)mnqn
⇒ [ m , n ] ∣ q n \Rightarrow [m,n]\mid qn [m,n]qn
⇒ [ m , n ] ∣ r \Rightarrow [m,n]\mid r [m,n]r

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值