前缀和+思维,CF 1984C2 - Magnitude (Hard Version)

目录

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解


一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

1984C2 - Magnitude (Hard Version)


二、解题报告

1、思路分析

C1 是只要求求最值,通过C1 我们知道 操作2最多只需要(注意是只需要,而非必须)执行一次。

为什么?

我们要得到最大值,执行操作2如果能让值变大,说明当前值为负数

如果我们通过多次操作2使得值变大,那么我们只需保留最后一次操作2仍然能得到最大值

那么我们预先求出最小前缀和min

如果min >= 0,那么操作1、2可以随便取,答案为 2^n

否则,答案为 Σ 2^{n - i - 1 - posi},其中 sum[i] == min,posi 为 sum[0, i] 中 >= 0 的 i 的数目

2、复杂度

时间复杂度: O(N)空间复杂度:O(N)

3、代码详解

 ​
#include <bits/stdc++.h>

// #define DEBUG

using u32 = unsigned;
using i64 = long long;
using u64 = unsigned long long;

constexpr int inf32 = 1E9 + 7;
constexpr i64 inf64 = 1E18 + 7;

constexpr int N = 400001;
std::vector<int> pow2(N);
constexpr int P = 998244353;

void solve() {
    int n;
    std::cin >> n;

    std::vector<int> a(n);

    i64 sum = 0, mi = 0;

    for (int i = 0; i < n; ++ i) {
        std::cin >> a[i];
        sum += a[i];
        mi = std::min(mi, sum);
    }

    if (mi == 0) {
        std::cout << pow2[n] << '\n';
        return;
    }

    sum = 0;
    i64 ans = 0;
    for (int i = 0, pos = 0; i < n; ++ i) {
        sum += a[i];
        if (sum == mi) {
            ans += pow2[n - i - 1 + pos];
            if (ans >= P) ans -= P;
        }
        if (sum >= 0) ++ pos;
    }

    std::cout << ans << '\n';
}

int main() {
    pow2[0] = 1;
    for (int i = 1; i < N; ++ i)
        pow2[i] = pow2[i - 1] * 2LL % P;

    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);

#ifdef DEBUG
    int cur = clock();
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w", stdout);
#endif

    int t = 1;
    std::cin >> t;

    while (t--) {
        solve();
    }
#ifdef DEBUG
    std::cerr << "run-time: " << clock() - cur << '\n';
#endif
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EQUINOX1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值