腐蚀,膨胀,细化算法详解

在一个网站看到了,觉得写得很详细,转载一下

腐蚀,膨胀,细化算法

今天所讲的内容属于一门新兴的学科:数学形态学(Mathematical Morphology)。说起来很有意思,它是法国和德国的科学家在研究岩石结构时建立的一门学科。形态学的用途主要是获取物体拓扑和结构信息,它通过物体和结构元素相互作用的某些运算,得到物体更本质的形态。在图象处理中的应用主要是:(1)利用形态学的基本运算,对图象进行观察和处理,从而达到改善图象质量的目的;(2)描述和定义图象的各种几何参数和特征,如面积、周长、连通度、颗粒度、骨架和方向性等。

限于篇幅,我们只介绍二值图象的形态学运算,对于灰度图象的形态学运算,有兴趣的读者可以阅读有关的参考书。在程序中,为了处理的方便,还是采用256级灰度图,不过只用到了调色板中的0255两项。

先来定义一些基本符号和关系。

1.         元素

设有一幅图象X,若点aX的区域以内,则称aX的元素,记作aX,如图6.1所示。

2.         B包含于X

设有两幅图象BX。对于B中所有的元素ai,都有aiX,则称B包含于(included in)X,记作 X,如图6.2所示。

3.         B击中X

设有两幅图象BX。若存在这样一个点,它即是B的元素,又是X的元素,则称B击中(hit)X,记作BX,如图6.3所示。

4.         B不击中X

设有两幅图象BX。若不存在任何一个点,它即是B的元素,又是X的元素,即BX的交集是空,则称B不击中(miss)X,记作BX=Ф;其中∩是集合运算相交的符号,Ф表示空集。如图6.4所示。

6.1     元素

6.2     包含

6.3     击中

6.4     不击中

5.         补集

设有一幅图象X,所有X区域以外的点构成的集合称为X的补集,记作Xc,如图6.5所示。显然,如果BX=Ф,则BX的补集内,即 Xc

6.5     补集的示意图

6.         结构元素

设有两幅图象BX。若X是被处理的对象,而B是用来处理X的,则称B为结构元素(structure element),又被形象地称做刷子。结构元素通常都是一些比较小的图象。

7.         对称集

设有一幅图象B,将B中所有元素的坐标取反,即令(xy)变成(-x-y),所有这些点构成的新的集合称为B的对称集,记作Bv,如图6.6所示。

8.         平移

设有一幅图象B,有一个点a(x0,y0),将B平移a后的结果是,把B中所有元素的横坐标加x0,纵坐标加y0,即令(xy)变成(x+x0y+y0),所有这些点构成的新的集合称为B的平移,记作Ba,如图6.7所示。

6.6     对称集的示意图

6.7     平移的示意图

好了,介绍了这么多基本符号和关系,现在让我们应用这些符号和关系,看一下形态学的基本运算。

腐蚀

把结构元素B平移a后得到Ba,若Ba包含于X,我们记下这个a点,所有满足上述条件的a点组成的集合称做XB腐蚀(Erosion)的结果。用公式表示为:E(X)={a| Ba  X}=X  B,如图6.8所示。

6.8     腐蚀的示意图

6.8X是被处理的对象,B是结构元素。不难知道,对于任意一个在阴影部分的点aBa 包含于X,所以XB腐蚀的结果就是那个阴影部分。阴影部分在X的范围之内,且比X小,就象X被剥掉了一层似的,这就是为什么叫腐蚀的原因。

值得注意的是,上面的B是对称的,即B的对称集Bv=B,所以XB腐蚀的结果和X Bv腐蚀的结果是一样的。如果B不是对称的,让我们看看图6.9,就会发现XB腐蚀的结果和X Bv腐蚀的结果不同。

6.9     结构元素非对称时,腐蚀的结果不同

6.8和图6.9都是示意图,让我们来看看实际上是怎样进行腐蚀运算的。

在图6.10中,左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B,那个标有origin的点是中心点,即当前处理元素的位置,我们在介绍模板操作时也有过类似的概念。腐蚀的方法是,拿B的中心点和X上的点一个一个地对比,如果B上的所有点都在X的范围内,则该点保留,否则将该点去掉;右边是腐蚀后的结果。可以看出,它仍在原来X的范围内,且比X包含的点要少,就象X被腐蚀掉了一层。

6.10   腐蚀运算

6.11为原图,图6.12为腐蚀后的结果图,能够很明显地看出腐蚀的效果。

6.11    原图

6.12   腐蚀后的结果图

下面的这段程序,实现了上述的腐蚀运算,针对的都是黑色点。参数中有一个BOOL变量,为真时,表示在水平方向进行腐蚀运算,即结构元素B  ;否则在垂直方向上进行腐蚀运算,即结构元素B  

BOOL Erosion(HWND hWnd,BOOL Hori)

{

       DWORD                             OffBits,BufSize;

LPBITMAPINFOHEADER    lpImgData;

       LPSTR                   lpPtr;

       HLOCAL                  hTempImgData;

       LPBITMAPINFOHEADER    lpTempImgData;

       LPSTR                            lpTempPtr;

       HDC                      hDc;

       HFILE                    hf;

       LONG                    x,y;

       unsigned 
char               num;

       
int                         i;

// 为了处理方便,仍采用256级灰度图,不过只用调色板中0和255两项

if ( NumColors != 256 ) {  

           MessageBox(hWnd,
" Must be a mono bitmap with grayscale palette! " ,

" Error Message " ,MB_OK | MB_ICONEXCLAMATION);

return  FALSE;

}


OffBits
= bf.bfOffBits - sizeof (BITMAPFILEHEADER);

// BufSize为缓冲区大小

       BufSize
= OffBits + bi.biHeight * LineBytes;

       
// 为新的缓冲区分配内存

       
if ((hTempImgData = LocalAlloc(LHND,BufSize)) == NULL)

{

            MessageBox(hWnd,
" Error alloc memory! " , " Error Message " ,

MB_OK
| MB_ICONEXCLAMATION);

return  FALSE;

    }


     lpImgData
= (LPBITMAPINFOHEADER)GlobalLock(hImgData);    

       lpTempImgData
= (LPBITMAPINFOHEADER)LocalLock(hTempImgData);

       
// 拷贝头信息和位图数据     

       memcpy(lpTempImgData,lpImgData,BufSize);

       
if (Hori)

       
{   

// 在水平方向进行腐蚀运算

              
for (y = 0 ;y < bi.biHeight;y ++ ) {

                     
// lpPtr指向原图数据,lpTempPtr指向新图数据

                     lpPtr
= ( char   * )lpImgData + (BufSize - LineBytes - y * LineBytes) + 1 ;

                     lpTempPtr
= ( char * )lpTempImgData +

(BufSize
- LineBytes - y * LineBytes) + 1 ;

                     
for (x = 1 ;x < bi.biWidth - 1 ;x ++ )

// 注意为防止越界,x的范围从1到宽度-2

                            num
= (unsigned  char ) * lpPtr;

                            
if  (num == 0 ) {   // 因为腐蚀掉的是黑点,所以只对黑点处理

                                   
* lpTempPtr = (unsigned  char ) 0 ;   // 先置成黑点

                                   
for (i = 0 ;i < 3 ;i ++ ) {

                                          num
= (unsigned  char ) * (lpPtr + i - 1 );

                                          
if (num == 255 )

// 自身及上下邻居中若有一个不是黑点,则将该点腐

// 蚀成白点

                                                 
* lpTempPtr = (unsigned  char ) 255 ;

                                                 
break ;

                                          }


                                   }


                            }


// 原图中就是白点的,新图中仍是白点

                            
else   * lpTempPtr = (unsigned  char ) 255 ;  

                            
// 指向下一个象素

                            lpPtr
++

                            lpTempPtr
++ ;

                     }


              }


       }


else

// 在垂直方向进行腐蚀运算

              
for (y = 1 ;y < bi.biHeight - 1 ;y ++ ) // 注意为防止越界,y的范围从1到高度-2

                     
// lpPtr指向原图数据,lpTempPtr指向新图数据

                     lpPtr
= ( char   * )lpImgData + (BufSize - LineBytes - y * LineBytes);

                     lpTempPtr
= ( char   * )lpTempImgData + (BufSize - LineBytes - y * LineBytes);

                     
for (x = 0 ;x < bi.biWidth;x ++ ) {

                            num
= (unsigned  char ) * lpPtr;

                            
if  (num == 0 ) // 因为腐蚀掉的是黑点,所以只对黑点处理

                                   
* lpTempPtr = (unsigned  char ) 0 // 先置成黑点

                                   
for (i = 0 ;i < 3 ;i ++ ) {

                                          num
= (unsigned  char ) * (lpPtr + (i - 1 ) * LineBytes);

                                          
if (num == 255 ) {

// 自身及上下邻居中若有一个不是黑点,则将该点腐

// 蚀成白点

                                                 
* lpTempPtr = (unsigned  char ) 255 ;

                                                 
break ;

                                          }


                                   }


                            }


// 原图中就是白点的,新图中仍是白点

                            
else   * lpTempPtr = (unsigned  char ) 255 ;

                            
// 指向下一个象素

                            lpPtr
++ ;

                            lpTempPtr
++ ;

                     }


              }


       }


    
if (hBitmap != NULL)

           DeleteObject(hBitmap);

       hDc
= GetDC(hWnd);     

       
// 产生新的位图

       hBitmap
= CreateDIBitmap(hDc,(LPBITMAPINFOHEADER)lpTempImgData,

(LONG)CBM_INIT,

(LPSTR)lpTempImgData
+

sizeof (BITMAPINFOHEADER) +

                                         NumColors
* sizeof (RGBQUAD),

(LPBITMAPINFO)lpTempImgData, DIB_RGB_COLORS);

       
// 起不同的结果文件名

       
if (Hori)

              hf
= _lcreat( " c:\\herosion.bmp " , 0 );

       
else

              hf
= _lcreat( " c:\\verosion.bmp " , 0 );

       _lwrite(hf,(LPSTR)
& bf, sizeof (BITMAPFILEHEADER)); 

       _lwrite(hf,(LPSTR)lpTempImgData,BufSize);

       _lclose(hf);

       
// 释放内存及资源

ReleaseDC(hWnd,hDc);

       LocalUnlock(hTempImgData);

       LocalFree(hTempImgData);

       GlobalUnlock(hImgData);

       
return  TRUE;

}


膨胀

膨胀(dilation)可以看做是腐蚀的对偶运算,其定义是:把结构元素B平移a后得到Ba,若Ba击中X,我们记下这个a点。所有满足上述条件的a点组成的集合称做XB膨胀的结果。用公式表示为:D(X)={a | BaX}=X  B,如图6.13所示。图6.13X是被处理的对象,B是结构元素,不难知道,对于任意一个在阴影部分的点aBa击中X,所以XB膨胀的结果就是那个阴影部分。阴影部分包括X的所有范围,就象X膨胀了一圈似的,这就是为什么叫膨胀的原因。

同样,如果B不是对称的,XB膨胀的结果和X Bv膨胀的结果不同。

让我们来看看实际上是怎样进行膨胀运算的。在图6.14中,左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B。膨胀的方法是,拿B的中心点和X上的点及X周围的点一个一个地对,如果B上有一个点落在X的范围内,则该点就为黑;右边是膨胀后的结果。可以看出,它包括X的所有范围,就象X膨胀了一圈似的。

6.13   膨胀的示意图

6.14   膨胀运算

6.15为图6.11膨胀后的结果图,能够很明显的看出膨胀的效果。

6.15   6.11膨胀后的结果图

下面的这段程序,实现了上述的膨胀运算,针对的都是黑色点。参数中有一个BOOL变量,为真时,表示在水平方向进行膨胀运算,即结构元素B  ;否则在垂直方向上进行膨胀运算,即结构元素B  

 

BOOL Dilation(HWND hWnd,BOOL Hori)

 

腐蚀运算和膨胀运算互为对偶的,用公式表示为(X  B)c=(Xc  B),即B腐蚀后的补集等于X的补集被B膨胀。这句话可以形象的理解为:河岸的补集为河面,河岸的腐蚀等价于河面的膨胀。你可以自己举个例子来验证一下这个关系。在有些情况下,这个对偶关系是非常有用的。例如:某个图象处理系统用硬件实现了腐蚀运算,那么不必再另搞一套膨胀的硬件,直接利用该对偶就可以实现了。

先腐蚀后膨胀称为开(open),即OPEN(X)=D(E(X))

让我们来看一个开运算的例子(见图6.16)

6.16开运算

在图16上面的两幅图中,左边是被处理的图象X(二值图象,我们针对的是黑点),右边是结构元素B,下面的两幅图中左边是腐蚀后的结果;右边是在此基础上膨胀的结果。可以看到,原图经过开运算后,一些孤立的小点被去掉了。一般来说,开运算能够去除孤立的小点,毛刺和小桥(即连通两块区域的小点),而总的位置和形状不变。这就是开运算的作用。要注意的是,如果B是非对称的,进行开运算时要用B的对称集Bv膨胀,否则,开运算的结果和原图相比要发生平移。图6.17和图6.18能够说明这个问题。

6.17 B膨胀后,结果向左平移了

6.18   Bv膨胀后位置不变

6.17是用B膨胀的,可以看到,OPEN(X)向左平移了。图18是用Bv膨胀的,可以看到,总的位置和形状不变。

6.19为图6.11经过开运算后的结果。

6.19   6.11经过开运算后的结果

开运算的源程序可以很容易的根据上面的腐蚀,膨胀程序得到,这里就不给出了。

先膨胀后腐蚀称为闭(close),即CLOSE(X)=E(D(X))

让我们来看一个闭运算的例子(见图6.20)

6.20   闭运算

在图6.20上面的两幅图中,左边是被处理的图象X(二值图象,我们针对的是黑点),右边是结构元素B,下面的两幅图中左边是膨胀后的结果,右边是在此基础上腐蚀的结果可以看到,原图经过闭运算后,断裂的地方被弥合了。一般来说,闭运算能够填平小湖(即小孔),弥合小裂缝,而总的位置和形状不变。这就是闭运算的作用。同样要注意的是,如果B是非对称的,进行闭运算时要用B的对称集Bv膨胀,否则,闭运算的结果和原图相比要发生平移。

6.21为图6.11经过闭运算后的结果。

6.21   .611经过闭运算后的结果

闭运算的源程序可以很容易的根据上面的膨胀,腐蚀程序得到,这里就不给出了。

你大概已经猜到了,开和闭也是对偶运算,的确如此。用公式表示为(OPEN(X))c=CLOSE((Xc)),或者(CLOSE(X))c =OPEN((Xc))。即开运算的补集等于X的补集的闭运算,或者闭运算的补集等于X的补集的开运算。这句话可以这样来理解:在两个小岛之间有一座小桥,我们把岛和桥看做是处理对象X,则X的补集为大海。如果涨潮时将小桥和岛的外围淹没(相当于用尺寸比桥宽大的结构元素对X进行开运算),那么两个岛的分隔,相当于小桥两边海域的连通(Xc做闭运算)

细化

细化(thinning)算法有很多,我们在这里介绍的是一种简单而且效果很好的算法,用它就能够实现从文本抽取骨架的功能。我们的对象是白纸黑字的文本,但在程序中为了处理的方便,还是采用256级灰度图,不过只用到了调色板中0255两项。

所谓细化,就是从原来的图中去掉一些点,但仍要保持原来的形状。实际上,是保持原图的骨架。所谓骨架,可以理解为图象的中轴,例如一个长方形的骨架是它的长方向上的中轴线;正方形的骨架是它的中心点;圆的骨架是它的圆心,直线的骨架是它自身,孤立点的骨架也是自身。文本的骨架嘛,前言中的例子显示的很明白。那么怎样判断一个点是否能去掉呢?显然,要根据它的八个相邻点的情况来判断,我们给几个例子(如图6.22所示)

6.22   根据某点的八个相邻点的情况来判断该点是否能删除

6.22中,(1)不能删,因为它是个内部点,我们要求的是骨架,如果连内部点也删了,骨架也会被掏空的;(2)不能删,和(1)是同样的道理;(3)可以删,这样的点不是骨架;(4)不能删,因为删掉后,原来相连的部分断开了;(5)可以删,这样的点不是骨架;(6)不能删,因为它是直线的端点,如果这样的点删了,那么最后整个直线也被删了,剩不下什么;(7)不能删,因为孤立点的骨架就是它自身。

总结一下,有如下的判据:(1)内部点不能删除;(2)孤立点不能删除;(3)直线端点不能删除;(4)如果P是边界点,去掉P后,如果连通分量不增加,则P可以删除。

我们可以根据上述的判据,事先做出一张表,从0255共有256个元素,每个元素要么是0,要么是1。我们根据某点(当然是要处理的黑色点了)的八个相邻点的情况查表,若表中的元素是1,则表示该点可删,否则保留。

查表的方法是,设白点为1,黑点为0;左上方点对应一个8位数的第一位(最低位),正上方点对应第二位,右上方点对应的第三位,左邻点对应第四位,右邻点对应第五位,左下方点对应第六位,正下方点对应第七位,右下方点对应的第八位,按这样组成的8位数去查表即可。例如上面的例子中(1)对应表中的第0项,该项应该为0(2)对应37,该项应该为0(3)对应173,该项应该为1(4)对应231,该项应该为0(5)对应237,该项应该为1(6)对应254,该项应该为0(7)对应255,该项应该为0

这张表我已经替大家做好了,可花了我不少时间呢!

static int erasetable[256]={

                                         0,0,1,1,0,0,1,1,          1,1,0,1,1,1,0,1,

                                   1,1,0,0,1,1,1,1,             0,0,0,0,0,0,0,1,

                                          0,0,1,1,0,0,1,1,             1,1,0,1,1,1,0,1,

                                          1,1,0,0,1,1,1,1,             0,0,0,0,0,0,0,1,

                                          1,1,0,0,1,1,0,0,             0,0,0,0,0,0,0,0,

                                          0,0,0,0,0,0,0,0,             0,0,0,0,0,0,0,0,

                                          1,1,0,0,1,1,0,0,             1,1,0,1,1,1,0,1,

                                   0,0,0,0,0,0,0,0,             0,0,0,0,0,0,0,0,

                           0,0,1,1,0,0,1,1,             1,1,0,1,1,1,0,1,

                                          1,1,0,0,1,1,1,1,             0,0,0,0,0,0,0,1,

                                          0,0,1,1,0,0,1,1,             1,1,0,1,1,1,0,1,

                                          1,1,0,0,1,1,1,1,             0,0,0,0,0,0,0,0,

                                          1,1,0,0,1,1,0,0,             0,0,0,0,0,0,0,0,

                                1,1,0,0,1,1,1,1,             0,0,0,0,0,0,0,0,

                                          1,1,0,0,1,1,0,0,             1,1,0,1,1,1,0,0,

                                   1,1,0,0,1,1,1,0,             1,1,0,0,1,0,0,0

                                     };

有了这张表,算法就很简单了,每次对一行一行的将整个图象扫描一遍,对于每个点(不包括边界点),计算它在表中对应的索引,若为0,则保留,否则删除该点。如果这次扫描没有一个点被删除,则循环结束,剩下的点就是骨架点,如果有点被删除,则进行新的一轮扫描,如此反复,直到没有点被删除为止。

实际上,该算法有一些缺陷。举个简单的例子,有一个黑色矩形,如图6.23所示。

6.23经过细化后,我们预期的结果是一条水平直线,且位于该黑色矩形的中心。实际的结果确实是一条水平直线,但不是位于黑色矩形的中心,而是最下面的一条边。

为什么会这样,我们来分析一下:在从上到下,从左到右的扫描过程中,我们遇到的第一个黑点就是黑色矩形的左上角点,经查表,该点可以删。下一个点是它右边的点,经查表,该点也可以删,如此下去,整个一行被删了。每一行都是同样的情况,所以都被删除了。到了最后一行时,黑色矩形已经变成了一条直线,最左边的黑点不能删,因为它是直线的端点,它右边的点也不能删,因为如果删除,直线就断了,如此下去,直到最右边的点,也不能删,因为它是直线的右端点。所以最下面的一条边保住了,但这并不是我们希望的结果。

解决的办法是,在每一行水平扫描的过程中,先判断每一点的左右邻居,如果都是黑点,则该点不做处理。另外,如果某个黑点被删除了,那么跳过它的右邻居,处理下一个点。这样就避免了上述的问题。

6.23  黑色矩形

6.24  6.23细化后的结果

解决了上面的问题,我们来看看处理后的结果,如图6.24所示。这次变成一小段竖线了,还是不对,是不是很沮丧?别着急,让我们再来分析一下:在上面的算法中,我们遇到的第一个能删除的点就是黑色矩形的左上角点;第二个是第一行的最右边的点,即黑色矩形的右上角点;第三个是第二行的最左边的点;第四个是第二行的最右边的点;……;整个图象处理这样一次后,宽度减少2。每次都是如此,直到剩最中间一列,就不能再删了。为什么会这样呢?原因是这样的处理过程只实现了水平细化,如果在每一次水平细化后,再进行一次垂直方向的细化(只要把上述过程的行列换一下),就可以了。

这样一来,每处理一次,删除点的顺序变成:(先是水平方向扫描)第一行最左边的点;第一行最右边的点;第二行最左边的点;第二行最右边的点;……最后一行最左边的点;最后一行最右边的点;(然后是垂直方向扫描)第二列最上边的点(因为第一列最上边的点已被删除);第二列最下边的点;第三列最上边的点;第三列最下边的点;……倒数第二列最上边的点(因为倒数第一列最上边的点已被删除);倒数第二列最下边的点。我们发现,刚好剥掉了一圈,这也正是细化要做的事。实际的结果也验证了我们的想法。

以下是源程序,黑体字部分是值得注意的地方。

CODE
BOOL Thinning(HWND hWnd)

{

       DWORD                             OffBits,BufSize;

     LPBITMAPINFOHEADER    lpImgData;

       LPSTR                            lpPtr;

       HLOCAL                  hTempImgData;

       LPBITMAPINFOHEADER    lpTempImgData;

       LPSTR                   lpTempPtr;

       HDC                      hDc;

       HFILE                    hf;

       LONG                    x,y;

       int                                        num;

       BOOL                     Finished;

       int                        nw,n,ne,w,e,sw,s,se;

//为了处理的方便,仍采用256级灰度图,不过只用调色板中0和255两项

       if( NumColors!=256) {

MessageBox(hWnd,"Must be a mono bitmap with grayscale palette!",

"Error Message",MB_OK|MB_ICONEXCLAMATION);

return FALSE;

}

OffBits=bf.bfOffBits-sizeof(BITMAPFILEHEADER);

//BufSize为缓冲区大小

       BufSize=OffBits+bi.biHeight*LineBytes;

//为新的缓冲区分配内存

       if((hTempImgData=LocalAlloc(LHND,BufSize))==NULL)

{

            MessageBox(hWnd,"Error alloc memory!","Error Message",

MB_OK|MB_ICONEXCLAMATION);

return FALSE;

}

     lpImgData=(LPBITMAPINFOHEADER)GlobalLock(hImgData);    

       lpTempImgData=(LPBITMAPINFOHEADER)LocalLock(hTempImgData);

       //拷贝头信息和位图数据     

       memcpy(lpTempImgData,lpImgData,BufSize);

       //结束标志置成假

       Finished=FALSE;

while(!Finished) { //还没有结束

              //结束标志置成假

            Finished=TRUE;

       //先进行水平方向的细化

              for (y=1;y<bi.biHeight-1;y++) { //注意为防止越界,y的范围从1到高度-2

                     //lpPtr指向原图数据,lpTempPtr指向新图数据

                     lpPtr=(char *)lpImgData+(BufSize-LineBytes-y*LineBytes);

                     lpTempPtr=(char *)lpTempImgData+(BufSize-LineBytes-y*LineBytes);

                     x=1; //注意为防止越界,x的范围从1到宽度-2

                     while(x<bi.biWidth-1) {

                            if(*(lpPtr+x)==0) { //是黑点才做处理

                                   w=(unsigned char)*(lpPtr+x-1);  //左邻点

                                   e=(unsigned char)*(lpPtr+x+1);  //右邻点

                                   if( (w==255)|| (e==255))

//如果左右两个邻居中至少有一个是白点才处理

                                          nw=(unsigned char)*(lpPtr+x+LineBytes-1); //左上邻点

                                          n=(unsigned char)*(lpPtr+x+LineBytes); //上邻点

                                          ne=(unsigned char)*(lpPtr+x+LineBytes+1); //右上邻点

                                          sw=(unsigned char)*(lpPtr+x-LineBytes-1); //左下邻点

                                          s=(unsigned char)*(lpPtr+x-LineBytes); //下邻点

                                          se=(unsigned char)*(lpPtr+x-LineBytes+1); //右下邻点

                                          //计算索引

                            num=nw/255+n/255*2+ne/255*4+w/255*8+e/255*16+

sw/255*32+s/255*64+se/255*128;

                                          if(erasetable[num]==1) { //经查表,可以删除

//在原图缓冲区中将该黑点删除

                                                 *(lpPtr+x)=(BYTE)255; 

//结果图中该黑点也删除

                                                 *(lpTempPtr+x)=(BYTE)255; 

                                                 Finished=FALSE; //有改动,结束标志置成假

                                                 x++; //水平方向跳过一个象素

                                          }

                                   }

                            }

                            x++; //扫描下一个象素

                     }

              }

       //再进行垂直方向的细化

              for (x=1;x<bi.biWidth-1;x++) { //注意为防止越界,x的范围从1到宽度-2

                     y=1; //注意为防止越界,y的范围从1到高度-2

                     while(y<bi.biHeight-1) {

                            lpPtr=(char *)lpImgData+(BufSize-LineBytes-y*LineBytes);

                            lpTempPtr=(char*)lpTempImgData+

(BufSize-LineBytes-y*LineBytes);

                            if(*(lpPtr+x)==0) { //是黑点才做处理

                                   n=(unsigned char)*(lpPtr+x+LineBytes);

                                   s=(unsigned char)*(lpPtr+x-LineBytes);

                                   if( (n==255)|| (s==255)) {

//如果上下两个邻居中至少有一个是白点才处理

                                          nw=(unsigned char)*(lpPtr+x+LineBytes-1);

                                          ne=(unsigned char)*(lpPtr+x+LineBytes+1);

                                          w=(unsigned char)*(lpPtr+x-1);

                                          e=(unsigned char)*(lpPtr+x+1);

                                          sw=(unsigned char)*(lpPtr+x-LineBytes-1);

                                          se=(unsigned char)*(lpPtr+x-LineBytes+1);

                                          //计算索引

num=nw/255+n/255*2+ne/255*4+w/255*8+e/255*16+

sw/255*32+s/255*64+se/255*128;

                                          if(erasetable[num]==1) { //经查表,可以删除

//在原图缓冲区中将该黑点删除

                                                 *(lpPtr+x)=(BYTE)255; 

//结果图中该黑点也删除

                                                 *(lpTempPtr+x)=(BYTE)255; 

                                                 Finished=FALSE; //有改动,结束标志置成假

                                                 y++;//垂直方向跳过一个象素

                                          }

                                   }

                            }

                            y++; //扫描下一个象素

                     }

              } 

}

     if(hBitmap!=NULL)

           DeleteObject(hBitmap);

       hDc=GetDC(hWnd);     

       //产生新的位图

       hBitmap=CreateDIBitmap(hDc,(LPBITMAPINFOHEADER)lpTempImgData,

(LONG)CBM_INIT,

(LPSTR)lpTempImgData+

sizeof(BITMAPINFOHEADER)+

NumColors*sizeof(RGBQUAD),

(LPBITMAPINFO)lpTempImgData,

DIB_RGB_COLORS);

hf=_lcreat("c:\\thinning.bmp",0);

       _lwrite(hf,(LPSTR)&bf,sizeof(BITMAPFILEHEADER)); 

       _lwrite(hf,(LPSTR)lpTempImgData,BufSize);

       _lclose(hf);

       //释放内存及资源

      ReleaseDC(hWnd,hDc);

       LocalUnlock(hTempImgData);

       LocalFree(hTempImgData);

       GlobalUnlock(hImgData);

       return TRUE;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值