使用nvidia-docker创建gpu支持深度学习环境的容器

本文详细记录了如何使用nvidia-docker安装和测试GPU支持的深度学习环境,包括从基础镜像尝试到拉取CUDA支持的深度学习镜像,以及容器的创建、镜像的发布和保存。在过程中,作者遇到了问题并分享了踩坑经验,最终成功移植了conda环境到Docker容器,并验证了TensorFlow在GPU上的运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

初次接触nvidia-docker相关的内容,记录部署的步骤和尝试过程。

一、安装nvidia-docker并测试

1、首先安装docker和nvidia-doker;
2、vim /etc/docker/daemon.json,添加代红框中的字段,这是为了在执行docker命令时默认使用nvidia-docker;修改好之后启动docker和nvidia-docker服务。
在这里插入图片描述

3、nvcc -V查看cuda版本,使用docker pull拉取对应cuda版本的镜像;
在这里插入图片描述
我这里是:docker pull nvidia/cuda:10.0-base
在这里插入图片描述
4、创建一个基于cuda镜像的容器,测试nvidia-smi
docker run --runtime=nvidia --rm nvidia/cuda:10.0-base nvidia-smi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蔡逸超

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值