爷青回!经典扫雷再现!

本文详细介绍了如何从头实现扫雷游戏。首先,通过游戏区域划分,分为game.h、game.c和test.c三个板块。接着,逐步阐述了游戏的整体框架建立、game()函数的实现、布置雷和找雷的逻辑。在game()函数中,涉及棋盘初始化、随机布置雷以及找雷的统计。文章最后展示了部分关键代码,并邀请读者一起体验编程的乐趣,重温经典游戏。
摘要由CSDN通过智能技术生成

目录

一、游戏介绍

二、游戏实现的大体思路

三、游戏的实现

1、游戏整体框架的建立

2、game()函数的实现 

 3、布置雷函数的实现

4、找雷  


一、游戏介绍

关于扫雷游戏,这是一个经典到不能在经典的游戏了。

相信这个游戏的规则大家都了解,在这里我就不过多介绍了。

二、游戏实现的大体思路

首先我们对整个游戏的实现进行区域划分,大体上分为三个板块。

1.game.h 板块:

这个板块由于存放各种函数接口,用于声明函数和头文件。

2. game.c 板块:

这个板块用于实现各种函数的功能。

3. test.c 板块:

这个板块用来实现整个程序的大体框架,和程序的测试。

然后根据游戏的内容进行编译,针对于扫雷游戏我们需要初始化棋盘、打印棋盘、布置雷和找雷等步骤,逐一进行完善。

三、游戏的实现

1、游戏整体框架的建立

首先需要在我们的test.c源文件下编写游戏的整体框架:

 

首先打印简易的菜单,输入0或1 进行开始游戏或者退出游戏 

2、game()函数的实现 

在我们选择开始游戏后,进入switch 选择语句中,开始执行game()函数

game()函数是我们的核心函数,里面包括棋盘的打印、布置雷、找雷等操作,由于功能较多我们可以对game()函数进行分装,分装成能实现某个功能的小函数:

这里创建两个二维数组的原因是一个用来布置雷,另一个什么都不显示,用来给玩家看。

因为后续找雷进行统计时需要判断输入位置周围的数组值,可能涉及到数组越界,所以我们要实现一个9*9大小的棋盘需要上下左右各多出一格,所以创建数组时实际需要一个11*11的数组。

这是我们布置雷前初始化得到的结果,隐藏版全都初始化成0,展示版全都初始化成  *  ,具体代码如下:

 3、布置雷函数的实现

对于布置雷,我们需要用时间戳来获取随机数,达到随机布置雷的效果:

在我们已经初始化好的全 0 棋盘上把获取到的位置改为 1 。

4、找雷  

对于找雷,如果输入的坐标有雷,则结束游戏,输出炸死了,如果没有雷,则统计该位置周围雷的个数,并在展示的棋盘上打印周围雷的个数。

然后进行对局的判断,如果非雷位置全部排查成功则输出排雷成功,我们可以设置一个变量来控制游戏的进行,该变量的值的上限是棋盘的总格数减去雷的个数。 

程序进行到这里,我们的游戏已经基本实现了,但是还有待优化,没能做到100%还原。

本篇文章就到这里了,感谢观看,快叫上你的小伙伴一起怀念童年吧!

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值