1021. Deepest Root (25)
A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.
Output Specification:
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.
Sample Input 1:5 1 2 1 3 1 4 2 5Sample Output 1:
3 4 5Sample Input 2:
5 1 3 1 4 2 5 3 4Sample Output 2:
Error: 2 components
分析:题目要求一个DFS;判断可用并查集或用图;排序习惯用优先队列
细节:主要考察代码熟练度
#include <iostream> #include <cstdio> #include <cmath> #include <queue> #include <vector> #include <functional> using namespace std; const int Max=10001; priority_queue<int, vector<int>, greater<int> > q; class Ver { public: int info; vector<int> link; int num; Ver(){ num=0; } Ver(int x){ info = x; } }ver[Max]; class graph { public: int numver; int numedge; int visited[Max]; graph(); void insertVer(int x); void insertEdge(int x, int y); int getedge(int v, int x); int DFS(int v, int h); }; graph::graph(){ numver=numedge=0; for (int i=0;i<Max;++i){ visited[i]=0; } } void graph::insertVer(int x){ ver[x].info=x; ++numver; } void graph::insertEdge(int x, int y){ ver[x].link.push_back(y) ; ver[y].link.push_back(x); ++ver[x].num; ++ver[y].num; ++numedge; } int graph::getedge(int v, int x) { return ver[v].link[x]; } int graph::DFS(int x, int h) { visited[x]=1; int tmp=h; for (int i=0;i<ver[x].num;++i){ int w=getedge(x,i); if (visited[w]!=1){ int t=DFS(w,h+1); if (tmp<t) tmp=t; } } return tmp; } int main() { // freopen("test.txt","r",stdin); graph g; int n; cin>>n; for (int i=1;i<=n;++i){ g.insertVer(i); } for (int i=1;i<n;++i){ int x,y; cin>>x>>y; g.insertEdge(x,y); } int flag=0; for (int i=1;i<=n;++i){ if (g.visited[i]==0){ ++flag; g.DFS(i,0); } } if (flag!=1) printf("Error: %d components\n",flag); else{ int tmp=0; for (int i=1;i<=n;++i){ for (int j=1;j<=g.numver;++j) g.visited[j]=0; int t=g.DFS(i,0); if (t>tmp){ tmp=t; while (!q.empty()) q.pop(); q.push(i); } else if (t==tmp) q.push(i); } while (!q.empty()){ printf("%d\n",q.top()); q.pop(); } } return 0; }