前言
一篇简单的二分查找的运用
题目
描述
请实现无重复数字的升序数组的二分查找
给定一个 元素升序的、无重复数字的整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标(下标从 0 开始),否则返回 -1
数据范围:
0
≤
l
e
n
(
n
u
m
s
)
≤
2
×
1
0
5
0≤len(nums)≤2×10^5
0≤len(nums)≤2×105 , 数组中任意值满足
∣
v
a
l
∣
≤
1
0
9
∣val∣≤10^9
∣val∣≤109
进阶:时间复杂度
O
(
l
o
g
n
)
O(logn)
O(logn) ,空间复杂度
O
(
1
)
O(1)
O(1)
示例1
输入:
[
−
1
,
0
,
3
,
4
,
6
,
10
,
13
,
14
]
,
13
[-1,0,3,4,6,10,13,14],13
[−1,0,3,4,6,10,13,14],13
返回值:
6
6
6
说明:13 出现在nums中并且下标为 6
示例2
输入:
[
]
,
3
[],3
[],3
返回值:
−
1
-1
−1
说明:nums为空,返回-1
示例3
输入:
[
−
1
,
0
,
3
,
4
,
6
,
10
,
13
,
14
]
,
2
[-1,0,3,4,6,10,13,14],2
[−1,0,3,4,6,10,13,14],2
返回值:
−
1
-1
−1
说明:2 不存在nums中因此返回 -1
解决方案一
1.1 思路阐述
这里阐述一下二分查找的算法思想:
对于一个给定的从小到大的排序好的序列0~9。我要查找一个target值为2的值。
需要用到三个索引,前中后(i,mid,j)
;它们分别指向,序列的第一个,中间位以及最后一位
每次用中间位索引所指的数值和target比较。如果target小于mid所指值则从mid左边的区间开始找,这时候需要调整一下几个索引的位置,i不变,j变为原来mid的前一个,mid介于i和j之间。如果target大于mid,则找mid右边的区间。
如果存在,则一定会找到。时间复杂度为 O ( l o g 2 ( n ) ) O(log_2(n)) O(log2(n))
1.2 源码
class Solution {
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param nums int整型vector
* @param target int整型
* @return int整型
*/
int search(vector<int>& nums, int target) {
// write code here
int i=0;
int j=nums.size()-1;
while (i<=j) {
int m=i+(j-i)/2;
if (nums[m]<target) {
i=++m;
continue;
}
if (nums[m]>target) {
j=--m;
continue;
}
if (nums[m]==target) {
return m;
}
}
return -1;
}
};
总结
简单回顾一下二分查找,注意二分查找的对象,一般是有序数列。