4、2023-2-21
2023-2-21
DEM:
INSAR:合成孔径雷达干涉,本质是一种应用于测绘和遥感的雷达技术,它利用合成孔径雷达对同一地区观测的两幅复数值影像(幅值+相位)数据进行
相干处理,以获取地表高程信息(DEM)的技术
基本原理:利用具有干涉成像能力的两部SAR天线(或者一部天线重复观测)来获取同一地区具有一定视角差的两幅具有相干性的单视复数图像,并由其干涉相位信息获取地表高程信息,从而重建DEM。
INSAR系统可分为双天线系统(
单次轨道干涉)和单天线系统(
重复轨道干涉)——:双天线系统是指由一台天线向地面发射雷达波,两部天线同时接收地面的后向散射回波,从而得到两幅或者多幅 SLC图像。
(*)RADARSAT2数据 D-INSAR处理
图像增强处理:
图像增强的最终目的是
为了更好的识别和解译图像。主要方法有:空间增强、光谱增强、辐射增强
具体过程:
(1)显示信息处理图像与标准图幅图像;
(2)启动几何校正模块;
(3)启动控制点工具;
(4)采集图像间控制点;
(5)计算转换模型;
(6)图像重采样;
(7)保存配准图像。
SAR数据的配准:
配准的目的:覆盖同一地区的多幅雷达影像,要进行时序分析、动态监测、多时相滤波处理等,需要进行图像之间的配准处理。
雷达数据的配准处理:要求数据是倾斜几何,并且各个图像采用相同的接收几何。配准不等同于地理编码,地理编码是将每个像素 从斜距几何转化为地图投影。
SAR数据的配准使用了交叉相干法(cross-correlation),全自动运行。
运行过程:
①根据
轨道参数和
DEM计算
局部非参数偏移估计(这是个什么东西?)如果轨道不准确,就用一个
大的心窗口(Central windows)估算。
②自动从参考图像和待配准图像上选择一组子窗口(交叉相关格网)
③计算两个图像子窗口中相应像素之间的交叉相关系数(交叉相关系数max表示最适合在方位和距离向上的局部像素偏移,达到亚像元配准精度)
-
根据方位角和距离像元位置,通过多项式计算残差偏移参数,并将其与原始局部非参数估计相加。
-
如果输入的SAR数据是SLC,则通过在分布在整个图像的小窗口(精细偏移参数)上计算“微型干涉图”来进一步细化残差参数偏移。如果相干性过低,用于精细偏移估计的点数可能不足以优化共配准过程。在这种情况下,将使用局部非参数偏移和改进的基于互相关的拟合(精细偏移参数>互相关采样)来进行共配,计算出最大的复相干,进一步计算偏移,达到1/100像元精度;否则利用抽样数据进一步计算偏移,达到1/10像元精度。
干涉处理:
*蔡崇法:以人工降雨和天然降雨实验之间的关系进行估算植被覆盖度.
Wang TW, Shi ZH, Li ZX, Cai CF*. 2008. Analysisof vegetation coverage change with multi-source data:A case study in Letianxi watershed of Three Gorges Area,China. ITESS, 3: 1214-1218
*高分辨率主动微波遥感的土壤水分反演与不确定性分析 韩玲 (书)
content:
(1)裸土地区地表参数给主动微波遥感反演土壤水分带来的不确定性:
Wang TW, Shi ZH, Li ZX, Cai CF*. 2008. Analysisof vegetation coverage change with multi-source data:A case study in Letianxi watershed of Three Gorges Area,China. ITESS, 3: 1214-1218
①地表参数量测的
不确定性:受物理量测手段的限制和人为的误差带来的不确定性;
②地表参数与参与反演的其他参数尺度不匹配引起的
不确定性: 反演模型中参与反演的后向散射系数是基于像元尺度的,与点测量的地表参数的尺度不匹配,从而引起反演误差;
③地表差异性引起的
不确定性:反演算法应用在地表差异性较大的区域,带来算法不适用引起的不确定性。
此书主要研究
如何有效去除主动微波遥感土壤水分反演中地表粗糙度参数的不确定性,并对粗糙度参数的不确定性进行量化分析,技术流程图如下
5、2023-3-20
深度学习deep learning
深度学习是机器学习的一个分支(最重要的那个),机器学习是人工智能的分支。
水管理论:可以近似的认为,深度学习的概念类似是一个复杂的管道系统(有很多层,也有很多阀门),输入流为信息的水流,而输出的结果则通过这些层数和阀门进行控制,计算机可以通过其巨大的运算能力去调节内部参数,以达到最佳结果的一种方式。
传统机器学习和深度学习的相似和区别:
相似:在数据准备和预处理方面,两者很近似; (数据清洗、数据标签、归一化、去噪、降维)
区别:传统机器学习的特征提取主要依赖人工,针对简单任务效率很高,但不能通用;
深度学习的特征提取则由机器自动提取,可解释性差。、
CNN、RNN\GANs、RL
6、2023-8-20
step① 理解别人的论文
=理解别人的方法 或者说insight 稍微做点实验来验证别人insights的合理性
step②提出自己的ideas
一个好的idea首先有两个需求:
一是基本设计即basic design,另一个是在此之上的改进,也就是说我们需要先解决这个基础的设计问题,即这个idea能够解决什么问题,然后针对这个basic design引发的更多的设计问题进行改进,
以适应不同的场景环境和需求。即advanced design。
step③完善你自己的设计
step④写论文