SPSS个人用不太明白,所以还是想着用excel软件计算一下这些基本的统计学数据:
首先是这几个统计学精度评价的概念:
对模型精度进行评价,采用决定系数(Coefficient of determination,R2)、均方根误差(Root Mean Square Error,RMSE)、平均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)和平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)等五个特征指标进行比较,指标公式见下文。本研究采取多次试验结果的平均数作为最终结果,降低模型随机性的影响。
模型拟合精度的高低通过R2进行评价,范围在0~1之间,越接近1说明模型的构建效果越好,拟合能力越强,反之,则说明模型构建效果较差,拟合能力弱。R2的计算公式如(3.18):
R2=1-i=1N(wi-yi)2i=1N(wi-y)2 (3.18)
均方误差MSE又称二次损失,常用于回归问题,是模型反演值与实测值之间误差的平方评价模型的优劣,即反演值与实测值差距越小,MSE就越小,均方误差的值越低,也说明模型对实验数据的解释更加精确,计算公式如(3.19):
MSE=1Ni=1N(wi-yi)2 (3.19)
均方根误差RMSE又称标准误差,是模型反演值与实测值误差的平方的均值,反映了反演结果与实测结果之间偏离的程度,RMSE越小,说明偏离的越少,模型的精度越高,计算公式如(3.20):
RMSE=1Ni=1N(wi-yi)2 (3.20)
平均绝对误差MAE表示模型反演值与实测值绝对误差的平均值,由于评价的是误差的绝对值,因此损失是固定的,受离散点影响较小,同样,MAE越小,说明模型的精度更好,计算公式如(3.21):
MAE=1Ni=1N|wi-yi| (3.21)
平均百分比误差MAPE,常用于衡量反演准确性的统计标准,MAPE低于10%时表示模型构建合理,计算公式如(3.22):
MAPE=1Ni=1N|wi-yi|wi×100% (3.22)
式中,N为样本数,wi 为模型反演土壤含水量值,yi
为实测土壤含水量值,y
为实测值均值。
(简要的概括一下,
R方即为拟合优度,0~1,表示模型预测结果与实测之间的拟合情况; 越高越好
MSE和RMSE,均方误差a和均方根,a:反演值和实测值差值的平方和/项数,b:前者的开根式。两者用以表示反演结果与实测结果的偏离程度;越低越好
MAE,MAPE, a平均绝对误差,b平均百分比误差,a:反演值和实测值差值的绝对值和/项数;b:反演值和实测值差值的绝对值/反演值 的和 /项数*100%。 用以表示反演的精度。
越小越好,MAPE小于10%表示合理。
计算方法:
1、计算r2和线性回归
打开excel,wps不行! 在选项栏→加载项找到分析数据库→转到,在分析数据库打勾
选择回归,对选项进行输入:
此处注意:这个x、y值的输入区域,要选择右边红框的按钮选择序列中的数据,而不能用ctrl选择首尾;
否则会出现:回归输入区域必须相邻引用的报错。
R2的计算:
RSQ(B2:B11,A2:A11)
RSQ(ys,xs)——ys是指响应变量的值,xs是预测变量的值
2、MSE、RMSE,MAE、MAPE的计算
MSE的计算:SUM((A3-B3)^2)/n=AVERAGE((A3-B3)^2)
rmse:mse开算术平方根
MAE:AVERAGE(ABS(A2-B2))
MAPE:AVERAGE(ABS((A2-B2)/A2))