使用Excel进行线性回归、计算R2、RMSE、MAE等精度方法

SPSS个人用不太明白,所以还是想着用excel软件计算一下这些基本的统计学数据:

首先是这几个统计学精度评价的概念:

对模型精度进行评价,采用决定系数(Coefficient of determination,R2)、均方根误差(Root Mean Square Error,RMSE)、平均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)和平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)等五个特征指标进行比较,指标公式见下文。本研究采取多次试验结果的平均数作为最终结果,降低模型随机性的影响。

模型拟合精度的高低通过R2进行评价,范围在0~1之间,越接近1说明模型的构建效果越好,拟合能力越强,反之,则说明模型构建效果较差,拟合能力弱。R2的计算公式如(3.18):

                                                                 R2=1-i=1N(wi-yi)2i=1N(wi-y)2                                                         (3.18)

均方误差MSE又称二次损失,常用于回归问题,是模型反演值与实测值之间误差的平方评价模型的优劣,即反演值与实测值差距越小,MSE就越小,均方误差的值越低,也说明模型对实验数据的解释更加精确,计算公式如(3.19):

                                                 MSE=1Ni=1N(wi-yi)2                                                     (3.19)

均方根误差RMSE又称标准误差,是模型反演值与实测值误差的平方的均值,反映了反演结果与实测结果之间偏离的程度,RMSE越小,说明偏离的越少,模型的精度越高,计算公式如(3.20):

                                               RMSE=1Ni=1N(wi-yi)2                                                   (3.20)

平均绝对误差MAE表示模型反演值与实测值绝对误差的平均值,由于评价的是误差的绝对值,因此损失是固定的,受离散点影响较小,同样,MAE越小,说明模型的精度更好,计算公式如(3.21):

                                                  MAE=1Ni=1N|wi-yi|                                                      (3.21)

平均百分比误差MAPE,常用于衡量反演准确性的统计标准,MAPE低于10%时表示模型构建合理,计算公式如(3.22):

                                             MAPE=1Ni=1N|wi-yi|wi×100%                                                (3.22)

式中,N为样本数,wi 为模型反演土壤含水量值,yi 为实测土壤含水量值,y 为实测值均值。

(简要的概括一下,

R方即为拟合优度,0~1,表示模型预测结果与实测之间的拟合情况;  越高越好

MSE和RMSE,均方误差a和均方根,a:反演值和实测值差值的平方和/项数,b:前者的开根式。两者用以表示反演结果与实测结果的偏离程度;越低越好

MAE,MAPE, a平均绝对误差,b平均百分比误差,a:反演值和实测值差值的绝对值和/项数;b:反演值和实测值差值的绝对值/反演值    的和  /项数*100%。  用以表示反演的精度。

越小越好,MAPE小于10%表示合理。

计算方法:

1、计算r2和线性回归

打开excel,wps不行! 选项栏→加载项找到分析数据库→转到,在分析数据库打勾

选择回归,对选项进行输入:

此处注意:这个x、y值的输入区域,要选择右边红框的按钮选择序列中的数据,而不能用ctrl选择首尾;

否则会出现:回归输入区域必须相邻引用的报错。

R2的计算:
RSQ(B2:B11,A2:A11)     
RSQ(ys,xs)——ys是指响应变量的值,xs是预测变量的值

2、MSE、RMSE,MAE、MAPE的计算

MSE的计算:SUM((A3-B3)^2)/n=AVERAGE((A3-B3)^2)
rmse:mse开算术平方根

MAE:AVERAGE(ABS(A2-B2))
MAPE:AVERAGE(ABS((A2-B2)/A2))


 

MATLAB是一种强大的数值计算环境,常用于处理各种科学计算任务。如果你需要在MATLAB中计算两个Excel文件的数据之间的均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)、平均百分比误差(MAPE)以及R²值,你需要先读取Excel数据,然后按照统计方法进行计算。以下是步骤概述: 1. **导入Excel数据**: 使用`readtable`函数从Excel文件中加载数据,例如: ```matlab data1 = readtable('file1.xlsx'); data2 = readtable('file2.xlsx'); ``` 2. **预处理数据**: 确保两份数据集具有相同的列和行数,并对应处理缺失值。 3. **计算MSE**: 表达式通常是`(y1 - y2).^2`, 其中y1和y2分别对应于两组数据,求所有元素的均值: ```matlab mse = mean((data1.Y - data2.Y).^2); ``` 4. **计算RMSE**: 对MSE开平方得到: ```matlab rmse = sqrt(mse); ``` 5. **计算MAE**: 平均绝对差异: ```matlab mae = mean(abs(data1.Y - data2.Y)); ``` 6. **计算MAPE**: 需要将每个预测值除以其真实值并取绝对值,然后求平均百分比: ```matlab mape = mean(absolute(data1.Y./data2.Y - 1)) * 100; ``` 7. **计算R²(决定系数)**: 如果`lmfit`或`regress`函数可用(针对回归分析),可以计算线性模型的R²: ```matlab linearModel = fitlm(data1, 'Y ~ X'); % 替换为你的自变量和因变量 r2 = linearModel.Rsquared.Ordinary; ``` 完成以上步骤后,你会得到所需指标的值。记得检查数据是否满足线性或其他假设,以便准确地应用R²。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值