利用ENVI计算植被覆盖度

一、植被覆盖度介绍

植被覆盖度(FVC或者VFC),是指植被(包括叶、茎、枝)在单位面积内植被的垂直投影面积所占百分比,它是植被群落覆盖地表状况的一个综合量化指标,是描述植被群落及生态系统的重要参数,植被覆盖及变化是区域生态系统环境变化的重要指示,对水文、生态、全球变化都具有重要意义,也是影响土壤侵蚀与水土流失的重要因子。(后续有个小补充)

二、实现方法及工作原理

植被覆盖度的测量方法主要分为:地面测量法、遥感估算法、*机器学习法。

其中地面测量法主要有目测估计法人工采样法,人工采样法主要通过在实地进行植物测量和采样,主要分为样点测量法和样线测量法,该方法相对精度较高,适合田间尺度的测量以及小面积和复杂地形的测量,但由于成本较高以及人力限制,现已逐渐被遥感大范围估算法所替代。

遥感估测法,主要有经验模型法、光谱植被指数法和像元分解模型法;

经验模型主要是通过对地面的实际测量数据进行分析,利用数理统计的方法得到植被覆盖度的时空分布规律, 并对其进行分析, 得到相关经验模型的测量方法。该方法只适用于某一特定的区域与植被类型, 不易推广。

植被指数法是根据植物的光谱特征,直接选取与植被覆盖度有良好相关性的植被指数,并通过植被指数与植被覆盖度的关系,估算植被覆盖度。常用的光学植被指数有NDVI、DVI等,通过计算不同波段之间的差异性,反应了不同程度的植被覆盖情况。(NDVI取值在-1~1之间,一般越接近1可以认为覆盖度越高;DVI是通过计算不同波段之间差值计算得到的,一般有绿边差值指数GDVI和红边差值指数RDVI,同样的,数值越高代表覆盖度越高)

像元分解模型具有计算模型简单可靠,数据参数通用易得、反演精度较高的优点:


通常,像元分为两种,纯净像元和混合像元。纯净像元是只含一种地物类型的像元,混合像元则是几种地物类型混合组成的像元。像元二分模型是一种简单实用的植被估算模型,假设一个像元的真实地表由有植被覆盖部分与无植被覆盖部分组成,那么遥感技术中传感器观测到的光谱信息就由这2个组分因子线性加权合成,各因子的权重是各自的面积在像元中所占的比率。

像元二分模型原理如下:

S=Sv+Ss    (1)

其中,S代表通过遥感传感器所观测到的信息,Sv指代绿色植被部分的信息,Ss指代无植被覆盖部分的信息,即裸土部分的信息。

植被覆盖度(VFC)指植被冠层的垂直投影面积与土壤总面积之比。设一个像元的植被覆盖度为fc,则裸止覆盖的面积比例为1-fc 。S\nu表示全植被覆盖的纯净像元信息,则与S\nu的乘积表示混合像元的植被信息SV:

      SV=fc*S\nu  (2)

同样的,若裸土覆盖的纯净像元的信息由Ss表示,则混合像元的土壤信息Ss可表示为1-fc与Ss的乘积:

Ss=(1-fc)*Ss     (3)

将公式(2)与(3)代入公式(1)得:

S=fc*S\nu +\left ( 1-fc \right )Ss    (4)

公式(4)化简可得植被覆盖度的公式为:

fc=\frac{\left ( S-Ss \right )}{\left ( S\nu-Ss \right )}               (5)

由(5)式可知,要想估算某一区域的植被覆盖度只要知道SsS\nu两个参数即可。该模型表达了遥感信息与植被覆盖度的关系,其优点是最大限度地降低了大气、土壤背景与植被类型等对遥感信息的影响,只保留了植被覆盖度的信息。其中参数SsS\nu所表示的是土壤与植被的纯像元所反映的遥感信息。

参考文献

滕玲. 基于时序Landsat解析合肥市植被覆盖度动态变化研究[D].安徽大学,2016.

基于机器学习的方法:

通过利用机器学习的方法对植被区和非植被区进行分类,然后利用统计分析的方法,计算二者的比值和整个区域的植被覆盖度。


三、具体过程

本次主要介绍像元分解模型中的像元二分法,即通过NDVI估算植被覆盖度(来自李苗苗):

其中,NDVIsoil是指裸土区域的NDVI值,NDVIveg则指植被覆盖区域的NDVI值;

此处有两个假设:

a、当区域内可以近似取VFCmax=100%,VFCmin=0%。公式可变为:

FVC = (NDVI - NDVImin)/ ( NDVImax - NDVImin) 

此时,NDVImax 和NDVImin分别为区域内最大和最小的NDVI值。由于不可避免存在噪声,NDVImax和NDVImin一般取一定置信度范围内的最大值与最小值,置信度的取值主要根据图像实际情况来定。

b、当区域内不能近似取VFCmax=100%,VFCmin=0%

当有实测数据的情况下,取实测数据中的植被覆盖度的最大值和最小值作为FVCmax和FVCmin,这两个实测数据对应图像的NDVI作为NDVImax和NDVImin。

当没有实测数据的情况下,取一定置信度范围内的NDVImax和NDVImin。FVCmax和 FVCmin根据经验估算。

实现过程:

实现过程:首先先找到一幅处理好的NDVI图像;

1)通过compute statistics工具,分析置信区间;

可以看出,在5%左右对应的NDVI值为0.216840,在95%左右对应的值为0.661338;

即最大的NDVImax≈0.661338,最小的NDVImin≈0.216840;其实在此处FVCmax≈1,FVCmin≈0;

2)

通过band math工具输入公式:

FVC =(b1 It NDVIsoil)*0+(b1 It NDVIveg)*1+(b1 ge NDVIsoil and b1 le NDVIveg)*((b1-NDVIsoil)/(NDVIveg-NDVIsoil))

即=(b1 lt 0.216840)*0 +(b1 gt 0.661338)*1+float(b1 ge   0.216840 and b1 le 0.661338)*((b1-0.216840)/(0.661338-0.216840))
即小于 0.216840 赋予 0 ,大于 0.661338 的赋予 1

感谢知乎作者:ENVI提取植被覆盖度

小补充:

植被覆盖因子(c)

不同于植被覆盖度FVC,是评估植被因素抵抗土壤侵蚀的能力及准确估算土壤侵蚀模数的重要参数。

在水土流失及水土保持领域发挥很重要的作用,一般∈【0,1】,c=0即代表此区域无植被覆盖;

本研究采用蔡崇法等的方法,即根据Ci因子与FGVC之间的关系式来估算Ci值,其值在0~1 之间。计算公式为:

FGVC即植被覆盖度,植被覆盖因子Ci是此类研究中重要的参数。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值