Poj2749 Building Roads

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Elemmir/article/details/51559185

有N个点,每个点向S1或S2连边。有一些恩怨情仇限制某些对点不能同时连向同一点,而某些对点必须同时连向同一点。每个点到S1和S2都有距离,我们要求可行方案中最大的两点间通过所连的S1(S2)到达彼此的距离最小是多少。

除了恩怨情仇外的限制再加上二分出的距离的限制来做2-SAT判定就好了。

#include<cmath>
#include<stack>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std;

struct edge {
    int x,y,next;
    edge(){}
    edge(int _x,int _y,int _nt):x(_x),y(_y),next(_nt){}
} e[ 1000005 ];
int head[2000],tot = 0;
inline void addedge(int x,int y) {
    e[++tot] = edge(x,y,head[x]); head[x] = tot;
}
bool ins[2000];
int inc[2000],dfn[2000],low[2000],SCC,T;
stack<int>sta;
void tarjan(int x){
    dfn[x] = low[x] = ++T;
    sta.push(x); ins[x] = 1;
    for (int i = head[x]; i; i = e[i].next) {
        int y = e[i].y;
        if( ! dfn[y] ) {
            tarjan(y);
            low[x] = min(low[x], low[y]);
        }else if( ins[y] && dfn[y] < low[x]) low[x] = dfn[y];
    }
    if( low[x] == dfn[x] ){
        SCC++;
        while(1) {
            int y = sta.top(); sta.pop(); ins[y] = 0;
            inc[y] = SCC;
            if (x == y ) break;
        }
    }
}
struct point {
    int x,y;
    point(){}
    point(int _x,int _y):x(_x),y(_y){}
} a[2005],s[3];
int dis(point a,point b) {
    return abs(a.x-b.x) + abs(a.y-b.y);
}
int N,A,B;
int e1[2005][2],e2[2005][2];
int d1[2005],d2[2005],d12;
bool judge(int d) {
    memset(head,0,sizeof head);
    tot = 0;

    for (int i = 1; i <= A; i++) {
        addedge(e1[i][0],   e1[i][1]+N);
        addedge(e1[i][0]+N, e1[i][1]);
        addedge(e1[i][1],   e1[i][0]+N);
        addedge(e1[i][1]+N, e1[i][0]);
    }
    for (int i = 1; i <= B; i++) {
        addedge(e2[i][0],   e2[i][1]);
        addedge(e2[i][0]+N, e2[i][1]+N);
        addedge(e2[i][1],   e2[i][0]);
        addedge(e2[i][1]+N, e2[i][0]+N);
    }
    for (int i = 1; i <= N; i++) for (int j = i+1; j <= N; j++) {
        if ( d1[i] + d1[j] > d ) {
            addedge(i,j+N);         
            addedge(j,i+N);
        }
        if ( d2[i] + d2[j] > d ) {
            addedge(i+N,j);
            addedge(j+N,i);
        } 
        if ( d1[i] + d12 + d2[j] > d ) {
            addedge(i,j); addedge(j+N,i+N);
        }
        if ( d2[i] + d12 + d1[j] > d ) {
            addedge(i+N,j+N); addedge(j,i);
        } 
    }
    SCC = 0; T = 0;
    memset(ins,0,sizeof ins);
    memset(dfn,0,sizeof dfn);
    for (int i = 1; i <= N<<1; i++) if( ! dfn[i] ) tarjan(i);
    for (int i = 1; i <= N; i++)
        if( inc[i] == inc[i+N] ) return 0;
    return 1;
}
int main() {
    scanf("%d%d%d",&N,&A,&B);
    scanf("%d%d%d%d",&s[1].x,&s[1].y,&s[2].x,&s[2].y);
    int L = 0x3f3f3f3f,R = -1 ,mid,ans;
    d12 = dis(s[1],s[2]);
    for (int i = 1; i <= N; i++) {
        scanf("%d%d",&a[i].x,&a[i].y);
        d1[i] = dis(a[i], s[1]);
        d2[i] = dis(a[i], s[2]);
        L = min(L,min(d1[i],d2[i]));
        R = max(R,max(d1[i],d2[i]));
    }
    L <<= 1, (R<<=1)+= d12, ans = 0x3f3f3f3f;
    for (int i = 1; i <= A; i++) scanf("%d%d",&e1[i][0],&e1[i][1]);
    for (int i = 1; i <= B; i++) scanf("%d%d",&e2[i][0],&e2[i][1]);
    while( L <= R) {
        int mid = (L + R) >> 1;
        if( judge(mid) ) ans = mid,R=mid-1;
        else L = mid + 1;
    }
    if( ans == 0x3f3f3f3f ) ans = -1;
    printf("%d\n",ans);
}

Building roads

05-16

Problem DescriptionnFarmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows. nnClever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns. nnThat's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to. nnWe have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other. nnNote that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|. nn nnInputnThe first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends with each other. nnNext line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively. nnEach of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one. nnEach of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other. nnThe same pair of barns never appears more than once. nnEach of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once. nnYou should note that all the coordinates are in the range [-1000000, 1000000]. n nnOutputnYou just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1. n nnSample Inputn4 1 1n12750 28546 15361 32055n6706 3887n10754 8166n12668 19380n15788 16059n3 4n2 3n nnSample Outputn53246

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试

关闭