【题解】【CCF】202104-2 邻域均值

本文介绍了如何使用邻域均值判断像素是否属于图像的较暗区域,以此来进行有针对性的降噪处理。通过计算像素邻域内所有元素的平均值并与给定阈值比较,确定降噪范围。提供了解题思路和C++代码实现,适用于图像处理和计算机软件能力认证考试相关的学习和实践。
摘要由CSDN通过智能技术生成

题目链接

计算机软件能力认证考试系统

题目描述

试题背景

顿顿在学习了数字图像处理后,想要对手上的一副灰度图像进行降噪处理。不过该图像仅在较暗区域有很多噪点,如果贸然对全图进行降噪,会在抹去噪点的同时也模糊了原有图像。因此顿顿打算先使用邻域均值来判断一个像素是否处于较暗区域,然后仅对处于较暗区域的像素进行降噪处理。

问题描述

待处理的灰度图像长宽皆为 n 个像素,可以表示为一个 n×n 大小的矩阵 A,其中每个元素是一个 [0,L) 范围内的整数,表示对应位置像素的灰度值。
对于矩阵中任意一个元素 Aij(0≤i,j<n),其邻域定义为附近若干元素的集和:

Neighbor(i,j,r)={Axy|0≤x,y<n and |x−i|≤r and |y−j|≤r}

这里使用了一个额外的参数 r 来指明 Aij 附近元素的具体范围。根据定义,易知 Neighbor(i,j,r) 最多有 (2r+1)2 个元素。

如果元素 Aij 邻域中所有元素的平均值小于或等于一个给定的阈值 t,我们就认为该元素对应位置的像素处于较暗区域
下图给出了两个例子,左侧图像的较暗区域在右侧图像中展示为黑色,其余区域展示为白色。

现给定邻域参数 r 和阈值 t,试统计输入灰度图像中有多少像素处于较暗区域

输入格式

输入共 n+1 行。

输入的第一行包含四个用空格分隔的正整数 n、L、r 和 t,含义如前文所述。

第二到第 n+1 行输入矩阵 A。
第 i+2(0≤i<n)行包含用空格分隔的 n 个整数,依次为 Ai0,Ai1,⋯,Ai(n−1)。

输出格式

输出一个整数,表示输入灰度图像中处于较暗区域的像素总数。

样例输入

4 16 1 6
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Data

样例输出

7

Data

样例输入

11 8 2 2
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 7 0 0 0 7 0 0 7 7 0
7 0 7 0 7 0 7 0 7 0 7
7 0 0 0 7 0 0 0 7 0 7
7 0 0 0 0 7 0 0 7 7 0
7 0 0 0 0 0 7 0 7 0 0
7 0 7 0 7 0 7 0 7 0 0
0 7 0 0 0 7 0 0 7 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Data

样例输出

83

Data

评测用例规模与约定

70% 的测试数据满足 n≤100、r≤10。

全部的测试数据满足 0<n≤600、0<r≤100 且 2≤t<L≤256。

解题思路

一开始直接暴力,结果会超时,可以利用前缀和,然后让最右边减最左边就是这个范围的和 

题解

#include<bits/stdc++.h>
using namespace std;
int g[605][605];
int h[605][605];			//行 
int main(){
	int n,L,r,t;
	double x;
	long long sum,cnt;
	scanf("%d %d %d %d",&n,&L,&r,&t);
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			scanf("%d",&g[i][j]); 
			h[i][j]=h[i][j-1]+g[i][j];
		}
	}
	int num=0;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			int l,r1,o,b;
			l=max(1,j-r);
			r1=min(n,j+r);
			o=max(1,i-r);
			b=min(n,i+r);
			sum=0;
			for(int k=o;k<=b;k++){
				sum+=h[k][r1]-h[k][l-1];
			}
			if(sum<=(b-o+1)*(r1-l+1)*t)	num++;
		}
	}
	printf("%d",num);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值