【题解】剑指 Offer II 007. 数组中和为 0 的三个数(双指针)(对撞指针)

本文介绍了如何使用排序和双指针算法解决寻找数组中和为零的不重复三元组的问题。首先对数组进行排序,然后通过一重循环找到一个数,接着设置目标和为目标数的相反数,利用两个指针从两侧向中间遍历,当三数之和为零时记录并去重,否则根据和的正负调整指针位置。这种方法有效地解决了去重和效率问题。
摘要由CSDN通过智能技术生成

题目链接

 力扣

题目描述

给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a ,b ,c ,使得 a + b + c = 0 ?请找出所有和为 0 且 不重复 的三元组。

示例 1:

输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
示例 2:

输入:nums = []
输出:[]
示例 3:

输入:nums = [0]
输出:[]
 

提示:

0 <= nums.length <= 3000
-105 <= nums[i] <= 105

解题思路

一开始想的是用map存储每个数字出现的次数,然后用双重循环,第三个元素用双重循环的前两个元素来代替,但是这样去重并不好完成,用map和set去重都不好完成

 看了一下题解,可以先对数组进行排序,然后用一重循环来判断其中一个数,然后将这个数的负数设为target,然后让对撞指针代表的两个数的和等于target就可以代表三数之和为零

 然后就是去重问题,这里我们选择的去重策略是让选择第一个不一样的数,也就是

            if(i>0&&nums[i-1]==nums[i])   continue;

然后当三者之和等于0的时候,两个指针也要进行去重处理

当三者之和不等于0的时候, 其实并不需要对两个指针进行去重,因为去不去重并不影响结果

题解

class Solution {
public:
    vector<vector<int>> v;
    vector<vector<int>> threeSum(vector<int>& nums) {
        if(nums.size()<3)   return {};
        sort(nums.begin(),nums.end());
        for(int i=0;i<nums.size();i++){
            if(i>0&&nums[i-1]==nums[i])   continue;
            int j=i+1;
            int sum=-nums[i];
            int k=nums.size()-1;
            while(j<k){
                if(nums[i]+nums[j]+nums[k]==0){
                    v.push_back({nums[i],nums[j],nums[k]});
                    /*这个地方代表
                    while(j<k){
                        j++;
                        if(&&nums[j-1]!=nums[j])    break;
                    }
                    */
                    while(j<k&&nums[j]==nums[++j]);
                    while(j<k&&nums[k]==nums[--k]);
                }else if(nums[k]+nums[j]>sum){
                    //不相同可以不用去重
                    k--;
                }else{
                    //不相同可以不用去重
                    j++;
                }
            }
        }
        return v;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值