剑指offer57.和为s的两个数字

本文介绍三种算法:二分查找、对撞双指针及哈希表法,用于在递增排序数组中寻找两数之和等于特定值。二分查找法时间复杂度O(NlogN),空间复杂度O(1);对撞双指针法时间复杂度O(N),空间复杂度O(1);哈希表法时间复杂度O(N),空间复杂度O(N)。
摘要由CSDN通过智能技术生成
题目描述

输入一个递增排序的数组和一个数字s,在数组中查找两个数,使得它们的和正好是s。如果有多对数字的和等于s,则输出任意一对即可。

解析
解法一
  • 思路:递增排序的数组一般会想到二分查找,和为数字s,可遍历数组元素,查找s-nums[i],一旦找到就退出循环。二分查找的复杂度为O(logN),遍历N个节点,所以总的时间复杂度是O(NlogN),空间复杂度是O(1)。
public int[] twoSum(int[] nums, int target) {
		for(int i=0;i<nums.length;i++) {
			int key1=nums[i];
			int key2 = target-nums[i];
			boolean exist = search(key2,nums,i+1);
			if(exist) {
				return new int[] {key1, key2};
			}
		}
		return new int[0];
    }
	private boolean search(int key, int[] nums, int i) {
		int j = nums.length-1;
		while(i<=j) {
			int mid=(i+j)/2;
			if(key==nums[mid]) return true;
			else if(key<nums[mid]) j=mid-1;
			else i=mid+1;
		}
		return false;
	}
题解之对撞双指针
  • 思路:双指针分别同时从前往后(指针i)、从后往前(指针j)遍历,当二者的和==s,返回;当和>s,j–;当和<s,i++。时间复杂度是O(N),空间复杂度是O(1)
public int[] twoSum(int[] nums, int target) {
		int i=0, j=nums.length-1;
		while(i<j) {
			int sum=nums[i]+nums[j];
			if(sum==target) return new int[] {nums[i], nums[j]};
			else if(sum>target) j--;
			else i++;
		}
		return new int[0];
	}
题解之哈希表法
  • 思路:用HashSet存数组的元素,contains方法可以O(1)的复杂度判断set内是否有某个数。时间复杂度是O(N),空间复杂度是O(N)。
 public int[] twoSum(int[] nums, int target) {
		HashSet<Integer> set = new HashSet<>();
		for(int i=0;i<nums.length;i++) {
			set.add(nums[i]);
		}
		for(int num:nums) {
			int key = target-num;
			if(set.contains(key)) return new int[] {num, key};
		}
		return new int[0];
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值