题目
咕咕东的雪梨电脑的操作系统在上个月受到宇宙射线的影响,时不时发生故障,他受不了了,想要写一个高效易用零bug的操作系统 ——
这工程量太大了,所以他定了一个小目标,从实现一个目录管理器开始。前些日子,东东的电脑终于因为过度收到宇宙射线的影响而宕机,无法写代码。他的好友TT正忙着在B站看猫片,另一位好友瑞神正忙着打守望先锋。现在只有你能帮助东东!
初始时,咕咕东的硬盘是空的,命令行的当前目录为根目录 root。
目录管理器可以理解为要维护一棵有根树结构,每个目录的儿子必须保持字典序。
现在咕咕东可以在命令行下执行以下表格中描述的命令:
命令
类型
实现
说明
MKDIR s
操作
在当前目录下创建一个子目录 s,s 是一个字符串
创建成功输出 “OK”;若当前目录下已有该子目录则输出 “ERR”
RM s
操作
在当前目录下删除子目录 s,s 是一个字符串
删除成功输出 “OK”;若当前目录下该子目录不存在则输出 “ERR”
CD s
操作
进入一个子目录 s,s 是一个字符串(执行后,当前目录可能会改变)
进入成功输出 “OK”;若当前目录下该子目录不存在则输出 “ERR”
特殊地,若 s 等于 “…” 则表示返回上级目录,同理,返回成功输出 “OK”,返回失败(当前目录已是根目录没有上级目录)则输出 “ERR”
SZ
询问
输出当前目录的大小
也即输出 1+当前目录的子目录数
LS
询问
输出多行表示当前目录的 “直接子目录” 名
若没有子目录,则输出 “EMPTY”;若子目录数属于 [1,10] 则全部输出;若子目录数大于 10,则输出前 5 个,再输出一行 “…”,输出后 5 个。
TREE
询问
输出多行表示以当前目录为根的子树的前序遍历结果
若没有后代目录,则输出 “EMPTY”;若后代目录数+1(当前目录)属于 [1,10] 则全部输出;若后代目录数+1(当前目录)大于 10,则输出前 5 个,再输出一行 “…”,输出后 5 个。若目录结构如上图,当前目录为 “root” 执行结果如下,
UNDO
特殊
撤销操作
撤销最近一个 “成功执行” 的操作(即MKDIR或RM或CD)的影响,撤销成功输出 “OK” 失败或者没有操作用于撤销则输出 “ERR”
输入输出
Input
输入文件包含多组测试数据,第一行输入一个整数表示测试数据的组数 T (T <= 20);
每组测试数据的第一行输入一个整数表示该组测试数据的命令总数 Q (Q <= 1e5);
每组测试数据的 2 ~ Q+1 行为具体的操作 (MKDIR、RM 操作总数不超过 5000);
面对数据范围你要思考的是他们代表的 “命令” 执行的最大可接受复杂度,只有这样你才能知道你需要设计的是怎样复杂度的系统。
Output
每组测试数据的输出结果间需要输出一行空行。注意大小写敏感。
Sample Input
1
22
MKDIR dira
CD dirb
CD dira
MKDIR a
MKDIR b
MKDIR c
CD ..
MKDIR dirb
CD dirb
MKDIR x
CD ..
MKDIR dirc
CD dirc
MKDIR y
CD ..
SZ
LS
TREE
RM dira
TREE
UNDO
TREE
Sample Output
OK
ERR
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
9
dira
dirb
dirc
root
dira
a
b
c
dirb
x
dirc
y
OK
root
dirb
x
dirc
y
OK
root
dira
a
b
c
dirb
x
dirc
y
思路分析
这道题是很大块的题目,题面很长且分多种情况,明白大概后可以先将问题划分成有结构的几部分,比如就先从程序入口开始写,再写一个solve()函数填充起框架。
接下来考虑将不同命令封装起来,定义一个目录结构体,将不同的命令操作封装起来。然后按照要求分别定义具体的命令操作函数。在solve()函数内转向不同的命令操作。
UNDO比较特殊,需要单独考虑。关键问题是:1.必须是MKDIR、RM、CD三种之一;2.必须已经执行成功。如果UNDO,需要保存每条指令执行的结果,用结构体command存储。
最后要实现TREE命令时,在后代节点数量大于10时,要开始前序遍历和后序遍历,要注意复杂度要求。解决方法是缓存,即懒更新,节点数远少于TREE操作数,指不定还有重复询问,对于目录相同期间问过的相同问题,理应只有一次是计算过程。
总结反思
遇到这种复杂的题目时先不要慌,采取自顶向下的思路,首先根据题目的任务需求设计编程框架,包括规划结构体封装、声明相关函数等;然后再根据具体要求对框架进行填充,考虑算法复杂度等问题。
AC代码
#include<iostream>
#include<string>
#include<map>
#include<vector>
using namespace std;
const int maxn=1e5+5;
const string op[]={"MKDIR","RM","CD","SZ","LS","TREE","UNDO"};
int t;
struct dir{
string name; //当前目录的名字
dir *par;
int subz; //子树大小
map<string,dir*> child; //维护树形结构
vector<string> tenDe;//当前节点的十个后代
bool update; //记录当前节点的子树有无变动,无变动则“十个后代”无需更新
dir(string name)
{
this->name=name;
par=NULL;
subz=1;
}
dir *getChild(string name) //取子目录并返回,不存在则返回空指针
{
auto it=child.find(name);
if(it==child.end())
return NULL;
return it->second;
}
void maintain(int delta)//向上维护子树大小
{
this->update=true;
subz+=delta;
if(par!=NULL)
par->maintain(delta);
}
dir *mkdir(string name) //创建子目录并返回,创建失败返回空指针
{
if(child.find(name)!=child.end())
return NULL;
dir* ch=new dir(name);
ch->par=this;
child[name]=ch;
maintain(1);
return ch;
}
dir *rm(string name) //删除子目录并返回,删除失败返回空指针
{
auto it=child.find(name);
if(it==child.end())
return NULL;
maintain(-1*it->second->subz);
dir*temp=it->second;
child.erase(it);
return temp;
}
dir*cd(string name)
{
if(".."==name)
return par;
return getChild(name);
}
bool addChild(dir *ch)//加入子目录并返回成功与否
{
if(child.find(ch->name)!=child.end())
return false;
child[ch->name]=ch;
maintain(ch->subz);
return true;
}
void sz()
{
printf("%d\n",subz);
}
void ls()
{
int size=child.size();
if(size==0)
printf("EMPTY\n");
else if(size<=10)
{
for(auto it=child.begin();it!=child.end();it++)
cout<<it->first<<endl;
}
else{
auto it=child.begin();
for(int i=0;i<5;i++,it++)
cout<<it->first<<endl;
printf("...\n");
it=child.end();
for(int i=0;i<5;i++)it--;
for(int i=0;i<5;i++,it++)
cout<<it->first<<endl;
}
}
void treeAll(vector<string>& bar)
{//全部后代加入桶
bar.push_back(name);
for(auto it=child.begin();it!=child.end();it++)
it->second->treeAll(bar);
}
void treeFirst(int num,vector<string>& bar)
{//前序遍历并加入首要的num个后代
bar.push_back(name);
if(--num==0) return;
int n=child.size();
auto it=child.begin();
while(n--)
{
int sts=it->second->subz;
if(sts>=num)
{
it->second->treeFirst(num,bar);
return;
}
else{
it->second->treeFirst(sts,bar);
num-=sts;
}
it++;
}
}
void treeLast(int num,vector<string>& bar)
{//后序遍历并加入首要的num个后代
int n=child.size();
auto it=child.end();
while(n--)
{
it--;
int sts=it->second->subz;
if(sts>=num)
{
it->second->treeLast(num,bar);
return;
}
else{
it->second->treeLast(sts,bar);
num-=sts;
}
}
bar.push_back(name);
}
void tree()
{
if(subz==1)
printf("EMPTY\n");
else if(subz<=10)
{
if(update)
{
tenDe.clear();
treeAll(tenDe);
update=false;
}
for(auto it=tenDe.begin();it!=tenDe.end();it++)
cout<<*it<<endl;
}
else{
if(update)
{
tenDe.clear();
treeFirst(5,tenDe);
treeLast(5,tenDe);
update=false;
}
for(int i=0;i<5;i++)
cout<<tenDe[i]<<endl;
printf("...\n");
for(int i=9;i>=5;i--)
cout<<tenDe[i]<<endl;
}
}
};
struct Cmd{
int type;
string arg;
dir *hiscmd; //记录刚刚操作设计的目录节点
void init(string s)
{
for(int i=0;i<7;i++)
{
if(s==op[i])
{
type=i;
if(i<3) cin>>arg;
return;
}
}
}
}cmd[maxn];
int cnt=-1;
string tmp;
vector<int> cmdlist;
dir* now=NULL;
void solve()
{
int n;
scanf("%d",&n);
while(n--)
{
//scanf("%s",tmp);
cin>>tmp;
cnt++;
cmd[cnt].init(tmp);
switch(cmd[cnt].type)
{
case 0:
cmd[cnt].hiscmd=now->mkdir(cmd[cnt].arg);
if(cmd[cnt].hiscmd==NULL)
printf("ERR\n");
else
printf("OK\n"),cmdlist.push_back(cnt);
break;
case 1:
cmd[cnt].hiscmd=now->rm(cmd[cnt].arg);
if(cmd[cnt].hiscmd==NULL)
printf("ERR\n");
else
printf("OK\n"),cmdlist.push_back(cnt);
break;
case 2:
dir*ch=now->cd(cmd[cnt].arg);
if(ch==NULL)printf("ERR\n");
else{
printf("OK\n");
cmd[cnt].hiscmd=now;
now=ch;
cmdlist.push_back(cnt);
}
break;
case 3:
now->sz();break;
case 4:now->ls();break;
case 5:now->tree();break;
case 6:
{
bool success=false;
while(!success&&!cmdlist.empty())
{
int n=cmdlist.back();
cmdlist.pop_back();
switch(cmd[n].type)
{
case 0:success=(now->rm(cmd[n].arg)!=NULL);break;
case 1:success=now->addChild(cmd[n].hiscmd);break;
case 2:now=cmd[n].hiscmd;success=true;break;
}
}
printf(success?"OK\n":"ERR\n");
}
}
}
}
int main()
{
cin>>t;
while(t--)
{
cmdlist.clear();
cnt=-1;
now=new dir("root");
solve();
}
return 0;
}