第1关:Spark SQL入门
1、Spark SQL程序的入口?
C、SparkSession
2、Spark SQL 为了支持结构化数据的处理,它提供了哪两个编程抽象?
A、DataFrame
B、Dataset
第2关:使用Spark SQL统计战斗机飞行性能
任务描述
通过飞行速度统计出战斗机飞行性能排比。
相关知识
本关使用 mySQL 统计战斗机飞行性能。
编程要求
请补全右侧 Begin - End 处代码,统计出全球飞行速度排名前三的战斗机。
本实训提供一份全球战斗机相关指标参数的 Json 数据(数据在 /root/jun.json)。
其中一条数据如下:
{"发动机数量":"双发","武器装备":"(1)机炮:30 mm机炮 150发; (2)导弹:鹰击-62反舰巡航导弹,鹰击-83反舰导弹,鹰击-91反舰导弹,鹰击-9多用途导弹,雷电-10反辐射导弹,霹雳-8空空导弹,霹雳-11空空导弹,霹雳-12中程空空导弹; (3)炸弹:雷霆2-雷射导引弹,雷石6-滑翔炸弹,200A反机场炸弹,通用炸弹500千克,1500千克。","发动机":"AL-31F涡扇发动机","机长":"21.19米","名称":"歼-16战机","乘员":"2人","关注度":"(5分)","研发单位":"中国沈阳飞机公司","气动布局":"后掠翼","机高":"5.9米","最大飞行速度":"1,438千米每小时","翼展":"14.7米","最大航程":"4,288千米","飞行速度":"超音速","首飞时间":"2011年10月17日"}
每条 Json 数据里可能有不同数量的成员,成员的值可能为空。
统计出指标后将结果以 csv 格式保存到 /root/airspark 目录。
# coding=utf-8
from pyspark.sql import SparkSession
#**********Begin**********#
#创建SparkSession
spark = SparkSession \
.builder \
.appName("Python Spark SQL ") \
.master("local")\
.getOrCreate()
#读取/root/jun.json中数据
df = spark.read.json("/root/jun.json").coalesce(1)
#创建视图
df.createOrReplaceTempView("table1")
#统计出全球飞行速度排名前三的战斗机
out=spark.sql("select cast(regexp_replace(regexp_extract(`最大飞行速度`,'[\\\d,\\\.]+',0),'\\\,','') as float) as speed,`名称` from table1 order by cast(regexp_replace(regexp_extract(`最大飞行速度`,'[\\\d,\\\.]+',0),'\\\,','') as float) DESC limit 3")
#保存结果
out.write.mode("overwrite").format("csv").save("/root/airspark")
#**********End**********#
spark.stop()
第3关:使用Spark SQL统计各个研发单位研制战斗机占比
任务描述
统计出各个研发单位研制战斗机占比。
相关知识
使用 Spark SQL 统计各个研发单位研制战斗机占比。
# coding=utf-8
from pyspark.sql import SparkSession
#**********Begin**********#
#创建SparkSession
spark = SparkSession \
.builder \
.appName("Python Spark SQL ") \
.master("local")\
.getOrCreate()
#读取/root/jun.json中数据
df = spark.read.json("/root/jun.json").coalesce(1)
#创建视图
df.createOrReplaceTempView("table1")
#统计出全球各研发单位研制的战斗机在全球所有战斗机中的占比
out=spark.sql("select concat(round(count(`研发单位`)*100/(select count(`研发单位`) as num from table1 where `研发单位` is not null and `名称`is not null ),2),'%') as ratio, `研发单位` from table1 where `研发单位` is not null and `名称`is not null group by `研发单位`")
#保存结果
out.write.mode("overwrite").format("csv").save("/root/airspark")
#**********End**********#
spark.stop()