【动态规划】完全背包问题

完全背包问题

  1. 完全背包问题就是在背包问题大逻辑前提之下,给定的n个物品没有个数的限制。
  2. 对于完全背包问题的状态表示与01背包问题是一样的,f(i, j),这个二维的集合表示:在前i个物品当中去选择,并且总体积小于等于j,然后集合的值也就是属性就是在满足这个状态的所有选法当中权重和最大的那个值。
  3. 在完全背包问题下的状态计算,也就是集合划分依据的是:***第i个物品到底选几个?***如图,就可以得到这个状态转移方程:
    在这里插入图片描述
  4. 这个是最朴素版的:对于这个状态转移方程有三个未知数,i是从1到n,j是从0到m,然后这个k是最里层的循环,需要从0开始,一直向后(没有数量限制),直到背包装不下为止。代码如下:
for (int i=1;i<=n;i++)
 {
     for (int j=0;j<=m;j++)
     {
         for (int k=0;v[i]*k<=m;k++)
         {
             if (j-v[i]*k>=0)
             {
                 f[i][j]=MAX(f[i][j],f[i-1][j-v[i]*k]+w[i]*k);
             }
         }
     }
 }
 printf("%d\n",f[n][m]);
  1. 对状态转移方程进行一个恒等变形,得到一个新的状态转移方程。这个新的方程的优势在于与k已经无关了,就可以少掉一层循环
    在这里插入图片描述
for (int i=1;i<=n;i++)
{
    for (int j=0;j<=m;j++)
    {
        f[i][j]=f[i-1][j]; //别漏
        if(j-v[i]>=0)
        {
            f[i][j]=MAX(f[i-1][j],f[i][j-v[i]]+w[i]);
        }
    }
}   
  1. 然后就是跟01背包问题一样,还可以继续进行优化到一维,就是用滚动数组的方式。
    在这里插入图片描述
for (int i=1;i<=n;i++)
{
     for (int j=v[i];j<=m;j++)
     {
         f[j]=MAX(f[j],f[j-v[i]]+w[i]);
     }
}

完全背包问题

来源:AcWing
luck
在这里插入图片描述

#include <stdio.h>
#define MAX(a,b) ((a)>(b)?(a):(b))
#define N 1010
int n,m;
int v[N];
int w[N];
int f[N];
int main()
{
    scanf("%d %d",&n,&m);
    for(int i=1;i<=n;i++)
    {
        scanf("%d %d",&v[i],&w[i]);
    }
    for (int i=1;i<=n;i++)
    {
        for (int j=v[i];j<=m;j++)
        {
            f[j]=MAX(f[j],f[j-v[i]]+w[i]);
        }
    }
    printf("%d\n",f[m]);
    return 0;   
}




  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

絕知此事要躬行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值