动态规划 完全背包问题

目录

LintCode 炼码完全背包问题

 【解法一】

【解法二】



完全背包问题

 【解法一】

解释: 第一个for循环表示从第一个物品开始遍历

            第二个for循环表示逆向 从背包容量为m时开始处理(滚动数组)

            第三个for循环表示装入k个该物品,装一个为下限,也可以为0

                           最多装入数为 容量j除以该物品重量(即为for循环上限)

            状态转移方程为在0-1背包问题上多了一次循环判断装第i个物品的个数

class Solution {
public:
    int backPackIII(vector<int> &a, vector<int> &v, int m) {
        // write your code here
        int n = a.size();
        vector<int> dp(m+1);
        for(int i = 0; i < n; i++)
            for(int j = m; j >= a[i]; j--)
                for(int k = 1; k <= j/a[i]; k++)
                    dp[j] = max(dp[j], (dp[j-k*a[i]] + k*v[i]));
        return dp[m];
    }
};

【解法二】

状态转移方程的推导:

对于完全背包,当j处于3的位置,3可以装入1个A物品,也就是(1,3)位置,只有1价值

                        也可以不装A,也就是在j=0的条件下装入一个B,达到3的价值

对于完全背包,当j处于6的位置,6可以装入3个A物品,也就是dp[i-1][j],但只有3的价值

                        也可以在装入一件B物品的条件下再继续装入一个B物品,达到了6的价值

通过上面俩个例子发现,(i,j)位置元素是在(i-1,j)和(i,j-w[i]+c[i])中取一个最大值

                        也就是在本行数据和上一行数据中选出一个最大值,那么应用到滚动数组思想,

                        dp[j] = max(dp[j], dp[j-w[i]]+c[i])                       

                        对应于0-1背包时从后往前更新元素,这里采用从前往后进行更新元素。

对照上图完全背包的推导过程,写出状态转移方程

即完全背包采用滚动数组思想后与0-1背包的转移方程为同一个,只是推导的顺序不同

第二层for循环,从j能够装入第i件物品的位置开始进行遍历

class Solution {
public:
    int backPackIII(vector<int> &a, vector<int> &v, int m) {
        // write your code here
        int n = a.size();
        vector<int> dp(m+1);
        for(int i = 0; i < n; i++)
            for(int j = a[i]; j <= m; j++)
                dp[j] = max(dp[j], (dp[j-a[i]] + v[i]));
        return dp[m];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值