卷积核的kernel size为什么要设置为奇数

博客介绍了卷积神经网络中卷积的三种模式:full、same、valid,强调了same模式下输入输出大小一致的特性。奇数卷积核被广泛使用,原因包括:1) 对称padding的便利性;2) 卷积核中心点的存在有利于获取中心信息;3) 效率上的优势。此外,还探讨了为何通常不选择偶数大小卷积核的原因。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积的3种模式

卷积有3种模式:full、same、valid

full:从filter与image开始相交就做卷积

same:当filter的中心与image相交开始做卷积,通常输入和输出的大小一样

vaild:当filter与image完全相交开始做卷积

卷积核的移动范围:full>same>vaild

同一输入image的情况下,输出的特征大小:full>same>vaild

kernel size设置奇数的原因

1. padding

通常使用的卷积模式是same convolution。

在步长为1的情况下,需要padding k-1个0才能使得输入和输出的尺寸一致。

若kernel size是奇数的,k-1则为偶数,能够均分到image的两边,就可以进行对称的padding;

若kernel size是偶数的,k-1则为奇数,则不能均分到image的两边;

2. 奇数的卷积核具有天然的中心点

卷积核的移动是默认用中心点作为基准,而kernel size为奇数的卷积核具有天然的中心点;

因此,也更加便于卷积操作获取到有效的中心信息。

3.奇数的效率比偶数更高(参考他人经验)

参考:为什么CNN中的卷积核一般都是奇数*奇数,没有偶数*偶数的? - 知乎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值