leetcode专题训练 32. Longest Valid Parentheses

1.这道题我最开始想到了只有左右括号个数匹配的字符串才是有效括号串,可是总是想不明白,中间有多的不能匹配的’('应该如何解决,后来看题解发现题解正向反向遍历了两边字符串,解决了这个问题,真是妙啊。

class Solution {
public:
    int longestValidParentheses(string s) {
        int le_brac = 0;
        int ri_brac = 0;
        int result = 0;
        int l = s.length();
        for (int i = 0; i < l; i++) {
            if (s[i] == ')') {
                ri_brac++;
            } else {
                le_brac++;
            }
            if (ri_brac > le_brac) {
                le_brac = ri_brac = 0;
            }
            if (ri_brac != 0 && ri_brac == le_brac) {
                if (le_brac * 2 > result) result = le_brac * 2;
            }
        }
        le_brac = ri_brac = 0;
        for (int i = l - 1; i >= 0; i--) {
            if (s[i] == ')') {
                ri_brac++;
            } else {
                le_brac++;
            }
            if (ri_brac < le_brac) {
                le_brac = ri_brac = 0;
            }
            if (ri_brac != 0 && ri_brac == le_brac) {
                if (le_brac * 2 > result) result = le_brac * 2;
            }
        }
        return result;
    }
};

2.又去看了题解中的动态规划方法,觉得也很巧妙,就写了一下

class Solution {
public:
    int longestValidParentheses(string s) {
        int result = 0;
        int l = s.length();
        int dp[l + 1];
        memset(dp, 0, sizeof (dp));
        for (int i = 1; i < l; i++) {
            if (s[i] == ')') {
                if (s[i - 1] == '(') {
                    if (i - 2 >= 0) {
                        dp[i] = dp[i - 2] + 2;
                    } else {
                        dp[i] = 2;
                    }
                } else {
                    if (i - 1 - dp[i - 1] >= 0 && s[i - 1 - dp[i - 1]] == '(') {
                        if (i - 2 - dp[i - 1] >= 0) {
                            dp[i] = dp[i - 1] + 2 + dp[i - 2 - dp[i - 1]];
                        }
                        else {
                            dp[i] = dp[i - 1] + 2;
                        }
                    }
                }
            }
            if (dp[i] > result) result = dp[i];
        }
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值