Outsourcing Large Matrix Inversion Computation to a Public Cloud

这篇博客介绍了将大矩阵求逆计算外包到公共云的安全协议。作者探讨了涉及的数学背景,包括柯西两行表示法和克罗内克函数,并详细阐述了密钥生成、洗牌算法和加密矩阵求逆的过程。文章还提到了安全性分析、正确性和验证方法,以及隐私保护措施。
摘要由CSDN通过智能技术生成

写在前面,研究生之路不易,而我又是个表达不清自己的人,论文看起来也很吃力,有点跨考的意思,所以想找个输出的地方,就来重拾博客,和大家交流一下,希望各位大佬批评指正,也希望对像我这样的小白有所帮助。

这是我整理的第一篇论文。

 

Outsourcing Large Matrix Inversion Computation to a Public Cloud

IEEE TRANSACTIONS ON CLOUD COMPUTI 2013

将大矩阵求逆外包到公共云

2013年,IEEE云计算会刊

1、用到的数学背景

(1)Cauchy's two-line notation (叫 柯西两行表示法?)

π(i)=pi

 π的逆函数 π-1(pi)=i

(2)克罗内克函数

克罗内克函数是一个二元函数,输入是两个整数,若二者相等,输出为1,否则,输出为0。

https://baike.baidu.com/item/克罗内克函数/5760735?fr=aladdin

2、协议设计

算法1:密钥生成程序

安全参数λ指定密钥空间,客户随机从中选择两组Kα,Kβ

算法2:洗牌算法

生成一个大小为n的数组(1~n),保存1~n的数值。

第一次从1~n-1中随机生成一个数值x,作为第一个随机数,然后将下标为x的数值与尾元素交换,

第二次从1~n-2中随机生成一个数值x,作为第二个随机数,然后将下标为x的数值与倒数第二个元素交换,

以此类推。

https://blog.csdn.net/qq_26399665/article/details/79831490

算法3:矩阵求逆加密

π1,π2为随机置换空间

Kα,Kβ为密钥

P1,P2为稀疏加密矩阵(P1,P2每一行每一列只有一个非零元素)

将矩阵x加密成矩阵Y

利用定理1,O(n2)的复杂度计算Y

引理1的证明

 

更正:

下标改变另有隐情,有时间过来更改。

和同学讨论了一下,对于π(i)=j来说,是p矩阵的第i行j列的元素不为0,求逆,i,j就要倒换过来了。

 

计算和验证

验证的时候,选择一个n*1维的随机向量r,进行验证

若向量P是零向量,则验证成功。

 

3、分析

(1)正确性

(2)安全保证

输入输出隐私保护

原始矩阵X加密要两个阶段

对于随机置换空间π,有(n!)2种,穷举攻击要平均尝试(n!)2/2次。

第二阶段,对于密钥空间K也类似。

(3)验证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值