文章目录
1、什么是损失函数
损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越小,通常模型的性能越好。不同的模型用的损失函数一般也不一样。
2、为什么要使用损失函数
损失函数的使用主要是在模型的训练阶段,每个批次的训练数据送入模型后,通过前向传播输出预测值,然后损失函数会计算出预测值和真实值之间的差异值,也就是损失值。得到损失值之后,模型通过反向传播去更新各个参数,来降低真实值与预测值之间的损失,使得模型生成的预测值往真实值方向靠拢,从而达到学习的目的。
3、损失函数分类
1、分类一
损失函数分为经验风险损失函数和结构风险损失函数。经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。
2、分类二
0-1损失函数(zero-one loss)
绝对值损失函数
log对数损失函数
平方损失函数
指数损失函数
Hinge 损失函数
感知损失(perceptron loss)函数
交叉熵损失函数 (Cross-entropy loss function)
注:对数损失函数和交叉熵损失函数应该是等价的!!!
详见:https://zhuanlan.zhihu.com/p/58883095
3、分类三
3.1基于距离度量的损失函数
基于距离度量的损失函数通常将输入数据映射到基于距离度量的特征空间上,如欧氏空间、汉明空间等,将映射后的样本看作空间上的点,采用合适的损失函数度量特征空间上样本真实值和模型预测值之间的距离。特征空间上两个点的距离越小,模型的预测性能越好。

最低0.47元/天 解锁文章
5994





