统计计算学习【随机模拟_Chapter4模拟随机变量-4.1逆变换法】

补充:伪随机数&线性同余方法产生随机数

  1. 伪随机数的概念:
    在这里插入图片描述

  2. 线性同余法(LCG方法)----产生均匀随机数【《统计计算》高惠璇】

  • 同余的概念:
    在这里插入图片描述
  • LCG方法的递推公式:
    在这里插入图片描述
  • 例子:
    在这里插入图片描述
  • 周期的概念:
    在这里插入图片描述

Chapter4 模拟随机变量

4.1 逆变换方法

4.1.1 离散型随机变量情形

在这里插入图片描述
特殊:
在这里插入图片描述

4.1.1.1 例子:
例4.1 产生给定概率分布的随机变量X

在这里插入图片描述

#方法1:
X <- 1:4 
p <- c(0.01,0.05,0.40,0.45)
sample(X,5,prob=p,replace=TRUE)

在这里插入图片描述

#方法2:
n <- 5
X <- rep(0,n);X
for(i in 1:n){
  u <- runif(1)
  if(u < 0.15) X[i] = 1
  else if(u < 0.15) X[i] = 2
  else if(u < 0.55) X[i] = 3
  else X[i] = 4
}
X

在这里插入图片描述

例4.2 随机排列1,…,n / 置换

在这里插入图片描述

#方法2的算法实现
perm <- function(n){
  X=1:n
  k=n
  while(k > 1){
    u <-  runif(1)
    I <- floor(k * u) + 1
    #引入中间变量V
    V <- X[k]
    X[k] <- X[I]
    X[I] <- V
    k <- k-1
  }
  X
}
#调用 perm()函数
perm(10)

在这里插入图片描述

例4.3 几何随机变量的生成

在这里插入图片描述

#例4.3 几何随机变量的生成
#产生n个参数为p的几何随机变量X的算法实现
n <- 8
U <- runif(n)
X <- floor(log(U) / log(1-p)) + 1
X

在这里插入图片描述

例4.4 产生带有均值 λ \lambda λ的Poisson随机变量

在这里插入图片描述
在这里插入图片描述

#用递归算法计算Poisson分布的概率程序:
lambda <- 3
r <- 6
k <- 8
n <- 8
p <- numeric(k)
p[1] <- exp(-lambda)
for(n in 2:r){
  p[n] <- exp(-lambda)
  for(j in 0:(n-2)){
    p[n] <- p[n] * lambda / (j + 1)
  }
  p[n]
}

感觉下面的代码哪一步出错了

#产生带有均值lambda的Poisson随机变量的逆变换算法
rpois <- function(n,lambda){
    Y <- rep(0,n)   #注意:课本这里写错了,把这行代码写进了for循环里,以至于结果不对
    for(j in 1:n){
       u <- runif(1)
       i <- 0;p <- exp(-lambda);F <- p
    
       while(u >= F){
          p <- lambda * p / (i + 1);F <- F + p;i <- i + 1
       }
       Y[j] <- i
    }
  Y
}
#调用rpois()函数
rpois(5,7)

在这里插入图片描述

例4.5 产生二项随机变量

在这里插入图片描述
在这里插入图片描述

#例4.5二项随机变量
#产生m个参数为(n,p)的二项随机变量的代码:
rb <- function(m,n,p){
  Y <- rep(0,m)
  for(j in 1:m){
    c <- p / (1-p);i <- 0;pr <- (1-p)^n;F <- pr
    u <- runif(1)
    while(u > F){
      pr <- c * (n - i)*pr / (i + 1);F <- F + pr;i <- i + 1 
    }
      Y[j] <- i
  }
  Y
}
rb(8,6,0.4)

在这里插入图片描述

例4.6 产生多项分布的随机数

较复杂,懂算法即可,代码不要求掌握
在这里插入图片描述
在这里插入图片描述

下面这段代码有点不大懂

#例4.6 多项分布
#实现r相对n比较大的情况
exam4_6_1 <- function(m,n,r,p){
  X <- matrix(0,nrow=m,ncol=r)
  for(i in 1:m){
    Y = sample(1:r,n,prob=p,replace=TRUE)
    for(j in 1:r){
      X[i,j]= length(Y[Y==j])
    }
  }
  X
}
exam4_6_1(6,20,8,c(0.1,0.25,0.05,0.12,0.08,0.03,0.01,0.01))

在这里插入图片描述

4.1.2 连续性随机变量情形

【后续补上】

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
随机信号分析》(Chapter 6)是王永德编写的一本关于随机信号分析的教材,该章节的主要内容是关于信号的功率谱密度函数(PSD)的分析。 在信号处理领域,随机信号是一种在时间和幅度上都是随机变化的信号。对于随机信号的分析,其中一个重要的概念就是功率谱密度函数。功率谱密度函数可以用来描述信号的功率在频域中的分布情况,是信号在不同频率上的功率密度。 在第6章中,王永德首先介绍了图像的基本概念,包括平均值、自相关函数等。然后,他引入了功率谱密度函数的定义,并介绍了如何通过傅里叶变换将信号从时域转换到频域。接着,他详细讲解了如何计算信号在频域上的功率谱密度函数,并给出了一些常见信号的功率谱密度函数的例子。 在随后的内容中,王永德还介绍了如何通过对随机信号的平均值和自相关函数进行估计来估计功率谱密度函数。他解释了如何使用周期图和Welch来估计功率谱密度函数,并介绍了这些方的优缺点。 最后,王永德还介绍了一些关于功率谱密度函数的统计性质,包括自相关函数与功率谱密度函数的傅里叶变换关系以及功率谱密度函数的线性性质等。 总的来说,通过《随机信号分析》(Chapter 6)这一章节的学习,读者可以了解到随机信号分析中功率谱密度函数的基本概念、计算及其在信号处理中的应用,为进一步深入学习随机信号分析打下了坚实的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值