文章目录
Mynavi Programming Contest 2021(AtCoder Beginner Contest 201)
A - Tiny Arithmetic Sequence
i f − e l s e if-else if−else直接判
B - Do you know the second highest mountain?
s o r t sort sort排序
C - Secret Number
本来以为要计数 D P DP DP/生成函数,但是仔细一看密码位数固定只有 4 4 4位,直接暴力枚举判断
D - Game in Momotetsu World
考试时一直正着跑两人交替,总是错;考虑过倒着跑回去,但是没有实现出来(自己想要的效果)
每个人都是聪明的,都想尽可能拉开与对方的正差距,缩小与对方的负差距
c i , j − d p i , j c_{i,j}-dp_{i,j} ci,j−dpi,j写得真的很妙
#include <cstdio>
#include <iostream>
using namespace std;
#define maxn 2005
int dp[maxn][maxn], c[maxn][maxn];
char s[maxn];
int n, m;
int main() {
scanf( "%d %d", &n, &m );
for( int i = 1;i <= n;i ++ ) {
scanf( "%s", s + 1 );
for( int j = 1;j <= m;j ++ )
c[i][j] = ( s[j] == '+' ? 1 : -1 );
}
for( int i = n;i;i -- )
for( int j = m;j;j -- ) {
if( i == n && j == m ) continue;
else if( i == n ) dp[i][j] = c[i][j + 1] - dp[i][j + 1];
else if( j == m ) dp[i][j] = c[i + 1][j] - dp[i + 1][j];
else dp[i][j] = max( c[i + 1][j] - dp[i + 1][j], c[i][j + 1] - dp[i][j + 1] );
}
if( dp[1][1] > 0 ) printf( "Takahashi\n" );
else if( dp[1][1] < 0 ) printf( "Aoki\n" );
else printf( "Draw\n" );
return 0;
}
E - Xor Distances
E
E
E竟然比
D
D
D简单凸(艹皿艹 )eggs
d i , j = d j , i ⇒ d i , j = d k , i ⨁ d k , j = d k , i ⨁ d k , j ⨁ d x , k ⨁ d x , k = d x , i ⨁ d x , j d_{i,j}=d_{j,i}\Rightarrow d_{i,j}=d_{k,i}\bigoplus d_{k,j}=d_{k,i}\bigoplus d_{k,j}\bigoplus d_{x,k}\bigoplus d_{x,k}=d_{x,i}\bigoplus d_{x,j} di,j=dj,i⇒di,j=dk,i⨁dk,j=dk,i⨁dk,j⨁dx,k⨁dx,k=dx,i⨁dx,j
两个点之间的最短距离异或等于任选一个点做超级点,超级点到两个点的最短距离异或和(不妨就设为 1 1 1)
异或是二进制操作,各位独立,考虑拆解每一位 i i i
如果 i i i位有贡献 2 i 2^i 2i,那么一定是两个点到 1 1 1的距离第 i i i位异或为 1 0 = 1 1^0=1 10=1
所以拆开每位分别统计有多少个点的距离该位为 1 1 1,乘法原理,任何一个都可以和该位不是 1 1 1的任何一个组起来
#include <cstdio>
#include <vector>
using namespace std;
#define maxn 200005
#define int long long
#define mod 1000000007
vector < pair < int, int > > G[maxn];
int n;
int dep[maxn];
void dfs( int u, int fa ) {
for( int i = 0;i < G[u].size();i ++ ) {
int v = G[u][i].first, w = G[u][i].second;
if( v == fa ) continue;
else dep[v] = dep[u] ^ w, dfs( v, u );
}
}
signed main() {
scanf( "%lld", &n );
for( int i = 1, u, v, w;i < n;i ++ ) {
scanf( "%lld %lld %lld", &u, &v, &w );
G[u].push_back( make_pair( v, w ) );
G[v].push_back( make_pair( u, w ) );
}
dfs( 1, 0 );
int ans = 0;
for( int j = 0;j < 60;j ++ ) {
int cnt = 0;
for( int i = 1;i <= n;i ++ )
if( 1ll << j & dep[i] ) cnt ++;
else;
ans = ( ans + ( 1ll << j ) % mod * cnt % mod * ( n - cnt ) % mod ) % mod;
}
printf( "%lld\n", ans );
return 0;
}
F - Insertion Sort
显然,对于每个数最多只会操作一次,假设不动数的集合为 S S S,且 S 1 < S 2 < . . . < S x S_1<S_2<...<S_x S1<S2<...<Sx
那么其必定满足 p o s S 1 < p o s S 2 < . . . < p o s S x pos_{S_1}<pos_{S_2}<...<pos_{S_x} posS1<posS2<...<posSx且对于某个点 i , i ∉ S i,i∉S i,i∈/S
- i : A i i:A_i i:Ai
- p o s i < S 1 : B i pos_i<S_1:B_i posi<S1:Bi
- S x < p o s i : C i S_x<pos_i:C_i Sx<posi:Ci
设 d p i : S dp_i:S dpi:S中最大下标为 i i i时的最小操作数
d p i = m i n ( ∑ j = 1 i − 1 m i n ( A j , B j ) , min j < i , p o s j < p o s i ( d p j + ∑ k = j + 1 i − 1 A k ) dp_i=min(\sum_{j=1}^{i-1}min(A_j,B_j),\min_{j<i,pos_j<pos_i}(dp_j+\sum_{k=j+1}^{i-1}A_k) dpi=min(∑j=1i−1min(Aj,Bj),minj<i,posj<posi(dpj+∑k=j+1i−1Ak)
对 p o s i pos_i posi建线段树, l o g log log查询
最后的答案即为 m i n ( d p i + ∑ j = i + 1 n m i n ( A j , C j ) ) min(dp_i+\sum_{j=i+1}^nmin(A_j,C_j)) min(dpi+∑j=i+1nmin(Aj,Cj))
#include <cstdio>
#include <iostream>
using namespace std;
#define inf 1e15
#define maxn 200005
#define int long long
int n;
int P[maxn], A[maxn], B[maxn], C[maxn];
int Asum[maxn], Bsum[maxn], Csum[maxn], pos[maxn];
int dp[maxn], t[maxn << 2];
void modfiy( int num, int l, int r, int p, int v ) {
if( l == r ) {
t[num] = v;
return;
}
int mid = ( l + r ) >> 1;
if( p <= mid ) modfiy( num << 1, l, mid, p, v );
else modfiy( num << 1 | 1, mid + 1, r, p, v );
t[num] = min( t[num << 1], t[num << 1 | 1] );
}
int query( int num, int l, int r, int L, int R ) {
if( L <= l && r <= R ) return t[num];
int mid = ( l + r ) >> 1, ans = inf;
if( L <= mid ) ans = min( ans, query( num << 1, l, mid, L, R ) );
if( mid < R ) ans = min( ans, query( num << 1 | 1, mid + 1, r, L, R ) );
return ans;
}
signed main() {
scanf( "%lld", &n );
for( int i = 1;i <= n;i ++ ) {
scanf( "%lld", &P[i] );
pos[P[i]] = i;
}
for( int i = 1;i <= n;i ++ )
scanf( "%lld %lld %lld", &A[i], &B[i], &C[i] );
for( int i = 1;i <= n;i ++ ) {
Asum[i] = Asum[i - 1] + A[i];
Bsum[i] = Bsum[i - 1] + min( A[i], B[i] );
Csum[i] = Csum[i - 1] + min( A[i], C[i] );
}
int ans = inf;
for( int i = 1;i <= n;i ++ ) {
dp[i] = min( Bsum[i - 1], query( 1, 1, n, 1, pos[i] ) + Asum[i - 1] );
ans = min( ans, dp[i] + Csum[n] - Csum[i] );
modfiy( 1, 1, n, pos[i], dp[i] - Asum[i] );
}
printf( "%lld\n", ans );
return 0;
}