【学习笔记】最小生成树系列的必做经典题

【模板】最小生成树

prim算法

最小生成树的 prim \text{prim} prim类似于最短路的 dijkstra \text{dijkstra} dijkstra

本质是:贪心

  • 首先随便钦定一个点为根,(一般来说我们习惯是 1 1 1)

    定义 d i s i dis_i disi表示现在最小生成树中某个点到 i i i的最短距离

    初始化全是最大值(除了钦定的点是 0 0 0),最小生成树还是个空树

  • 然后每一次选择还没有加入最小生成树的距离最小的点,加入最小生成树,统计记录距离贡献

  • 利用这个点更新剩下的没有进入最小生成树的点的距离

  • 每一次都会加入一个点, n n n次遍历后,还没有加入所有的点,意味着根本没有最小生成树

显然,这与 dijkstra \text{dijkstra} dijkstra是一样的,严格 O ( n 2 ) O(n^2) O(n2)

适用于稠密图

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define maxn 200005
int n, m, cnt = 1;
int to[maxn << 1], nxt[maxn << 1], head[maxn], cost[maxn << 1], dis[maxn];
bool vis[maxn];

int main() {
	scanf( "%d %d", &n, &m );
	for( int i = 1, u, v, w;i <= m;i ++ ) {
		scanf( "%d %d %d", &u, &v, &w );
		to[cnt] = v, nxt[cnt] = head[u], cost[cnt] = w, head[u] = cnt ++;
		to[cnt] = u, nxt[cnt] = head[v], cost[cnt] = w, head[v] = cnt ++;
	}
	memset( dis, 0x7f, sizeof( dis ) );
	cnt = dis[1] = 0; int ans = 0;
	for( int k = 1;k <= n;k ++ ) {
		int now = 0;
		for( int i = 1;i <= n;i ++ )
			if( dis[i] < dis[now] and ! vis[i] ) now = i;
		if( ! now ) break;
		else vis[now] = 1, cnt ++, ans += dis[now];
		for( int i = head[now];i;i = nxt[i] )
			dis[to[i]] = min( dis[to[i]], cost[i] );
	}
	if( cnt ^ n ) printf( "orz\n" );
	else printf( "%d\n", ans );
 	return 0;
}

kruskal算法

本质:贪心

辅助工具:并查集

  • 将所有边按边权排序

  • 贪心的,选择边权最小的操作

    但是可能这条边操作后会导致环的出现,所以需要并查集判断,边的两个点是否已经连接

  • trick \text{trick} trick:当成功加入 n − 1 n-1 n1条边后,意味着最小生成树已经构建成功,提前跳出循环

时间复杂度的瓶颈在排序身上, O ( m log ⁡ m ) O(m\log m) O(mlogm),适用于稀疏图

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define maxn 200005
int n, m;
int f[maxn];
struct node { int u, v, w; }E[maxn];

int find( int x ) { return f[x] == x ? x : f[x] = find( f[x] ); }

int main() {
	scanf( "%d %d", &n, &m );
	for( int i = 1, u, v, w;i <= m;i ++ ) {
		scanf( "%d %d %d", &u, &v, &w );
		E[i] = { u, v, w };
	}
	sort( E + 1, E + m + 1, []( node x, node y ) { return x.w < y.w; } );
	for( int i = 1;i <= n;i ++ ) f[i] = i;
	int cnt = 0, ans = 0;
	for( int i = 1;i <= m;i ++ ) {
		int u = find( E[i].u ), v = find( E[i].v ), w = E[i].w;
		if( u ^ v ) {
			f[v] = u, ans += w, cnt ++;
			if( cnt == n - 1 ) break;
		}
	}
	if( cnt != n - 1 ) printf( "orz\n" );
	else printf( "%d\n", ans );
 	return 0;
}

Borůvka (Sollin)算法

Bor u ˚ vka (Sollin) \text{Borůvka (Sollin)} Boru˚vka (Sollin) 可以堪称是 prim \text{prim} prim的多源扩展版

  • 初始时,每个点独立看成一个连通块

  • 枚举所有的边,用还未使用的边更新不同连通块之间的最短边,或者说是更新每个连通块连出去的最短边

  • 然后枚举每个有最短边连出的连通块,将最短边加入最小生成树,合并边连接的两点所在的不同连通块

    由于有些连通块的最短边是一条边,前面可能已经操作了,用布尔数组标记一下即可,不要重复操作边

  • 重复操作直到只剩一个连通块

每次合并,连通块个数都会 / 2 /2 /2,所以外层是 log ⁡ n \log n logn的,这也是为什么略优于 kruskal \text{kruskal} kruskal的原因

时间复杂度 O ( m log ⁡ n ) O(m\log n) O(mlogn)

#include <cstdio>
#define maxn 200005
struct node { int u, v, w; }E[maxn];
int n, m, ans, cnt;
int f[maxn], g[maxn];
bool vis[maxn];

int find( int x ) { return f[x] == x ? x : f[x] = find( f[x] ); }

void merge( int u, int v ) { u = find( u ), v = find( v ), f[v] = u; }

int main() {
	scanf( "%d %d", &n, &m );
	for( int i = 1, u, v, w;i <= m;i ++ ) {
		scanf( "%d %d %d", &u, &v, &w );
		E[i] = { u, v, w };
	}
	for( int i = 1;i <= n;i ++ ) f[i] = i;
	while( 1 ) {
		bool flag = 1;
		for( int i = 1;i <= n;i ++ ) g[i] = 0;
		for( int i = 1;i <= m;i ++ ) {
			if( vis[i] ) continue;
			int u = find( E[i].u ), v = find( E[i].v );
			if( u == v ) continue;
			if( ! g[u] or E[g[u]].w > E[i].w ) g[u] = i;
			if( ! g[v] or E[g[v]].w > E[i].w ) g[v] = i;
		}
		for( int i = 1;i <= n;i ++ ) 
			if( g[i] and ! vis[g[i]] ) {
				cnt ++;
				flag = 0;
				vis[g[i]] = 1;
				merge( E[g[i]].u, E[g[i]].v );
				ans += E[g[i]].w;
			}
		if( flag ) break;
	}
	if( cnt != n - 1 ) printf( "orz\n" );
	else printf( "%d\n", ans );
	return 0;
}

一般根据边数量的范围决定是 prim / kruskal \text{prim}/\text{kruskal} prim/kruskal

Bor u ˚ vka (Sollin) \text{Borůvka (Sollin)} Boru˚vka (Sollin)很少见,但是遇到0/1异或的题目,思想可用于启发式合并


接下来就是在最小生成树的基础上各种提高的最小**生成树系列

次小生成树

luoguP4180 [BJWC2010]严格次小生成树

最小生成树性质1 :往最小生成树上加一条边,就会形成一个环,环为 u ↔ l c a ( u , v ) ↔ v u\leftrightarrow lca(u,v)\leftrightarrow v ulca(u,v)v

最小生成树性质2 :新加边的边权一定大于等于最小生成树的所有边权

最小生成树性质3 :如果用新边替换最小生成树的一条边,最小生成树的边权和一定增大或不变

最小生成树性质4 :如果用新边替换,为了不形成环,必须替换的是 u ↔ l c a ( u , v ) ↔ v u\leftrightarrow lca(u,v)\leftrightarrow v ulca(u,v)v路径中的一条边。显然,假设加了新边,那就形成了一个环,需要断掉这个环上的另外一条边

次小生成树,顾名思义,一定是边权和第二小的另一个生成树

但是,新加哪条边呢??——不知道欸——那就枚举吧!

枚举不在最小生成树上的边,用该边替换掉原生成树上的某条边

问题又来了?替换哪条边??——不知道欸——再枚举吧

不行!你怕是T傻了,肯定是替换最大边权的边

为了不形成环,只能是 u ↔ l c a ( u , v ) ↔ v u\leftrightarrow lca(u,v)\leftrightarrow v ulca(u,v)v上的一条边权最大的边

不会有人想着每次都去走一遍吧

倍增提前预处理即可

但是万一最大边权更新加边权一样大,不就不能满足严格大于了吗

这就是你在倍增爬树时候,需要维护的啦,不仅要有最大边权,还要有严格次大边权,这就是代码能力问题了

#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
#define maxn 300005
#define int long long
struct node {
	int u, v, w;
	node() {}
	node( int U, int V, int W ) {
		u = U, v = V, w = W;
	}
}edge[maxn];
vector < pair < int, int > > G[maxn];
int n, m, cnt, ans;
bool vis[maxn];
int f[maxn], dep[maxn];
int fa[maxn][20], w[maxn][20];

int find( int x ) { return f[x] == x ? x : f[x] = find( f[x] ); }

void kruskal() {
	sort( edge + 1, edge + cnt + 1, []( node x, node y ) { return x.w < y.w; } );
	for( int i = 1;i <= n;i ++ ) f[i] = i;
	int used = 0;
	for( int i = 1;i <= cnt;i ++ ) {
		int u = edge[i].u, v = edge[i].v, w = edge[i].w;
		int fu = find( u ), fv = find( v );
		if( fu == fv ) continue;
		else {
			vis[i] = 1, used ++, ans += w, f[fv] = fu;
			G[u].push_back( make_pair( v, w ) );
			G[v].push_back( make_pair( u, w ) );
		}
		if( used == n - 1 ) return;
	}
}

void dfs( int u, int father ) {
	dep[u] = dep[father] + 1;
	for( int i = 1;i < 20;i ++ ) {
		fa[u][i] = fa[fa[u][i - 1]][i - 1];
		w[u][i] = max( w[u][i - 1], w[fa[u][i - 1]][i - 1] );
	}
	for( int i = 0;i < G[u].size();i ++ ) {
		int v = G[u][i].first, dis = G[u][i].second;
		if( v == father ) continue;
		fa[v][0] = u, w[v][0] = dis;
		dfs( v, u );
	}
}

pair < int, int > lca( int u, int v ) {
	int maxx = -1, temp = -1;
	if( dep[u] < dep[v] ) swap( u, v );
	for( int i = 19;~ i;i -- )
		if( dep[fa[u][i]] >= dep[v] ) {
			if( w[u][i] > maxx ) temp = maxx, maxx = w[u][i];
			if( w[u][i] < maxx && w[u][i] > temp ) temp = w[u][i];
			u = fa[u][i];
		}
	if( u == v ) return make_pair( maxx, temp );
	for( int i = 19;~ i;i -- )
		if( fa[u][i] != fa[v][i] ) {
			if( w[u][i] > maxx ) temp = maxx, maxx = w[u][i];
			if( w[u][i] < maxx && w[u][i] > temp ) temp = w[u][i];
			if( w[v][i] > maxx ) temp = maxx, maxx = w[v][i];
			if( w[v][i] < maxx && w[v][i] > temp ) temp = w[v][i];
			u = fa[u][i], v = fa[v][i];
		}
	if( w[u][0] > maxx ) temp = maxx, maxx = w[u][0];
	if( w[u][0] < maxx && w[u][0] > temp ) temp = w[u][0];
	if( w[v][0] > maxx ) temp = maxx, maxx = w[v][0];
	if( w[v][0] < maxx && w[v][0] > temp ) temp = w[v][0];
	return make_pair( maxx, temp ); 
}

signed main() {
	scanf( "%lld %lld", &n, &m );
	for( int i = 1, u, v, w;i <= m;i ++ ) {
		scanf( "%lld %lld %lld", &u, &v, &w );
		if( u == v ) continue;
		else edge[++ cnt] = node( u, v, w );
	}
	kruskal();
	dfs( 1, 0 );
	int result = 1ll << 60;
	for( int i = 1;i <= cnt;i ++ )
		if( vis[i] ) continue;
		else {
			pair < int, int > tmp = lca( edge[i].u, edge[i].v );
			if( tmp.first != edge[i].w )
				result = min( result, ans - tmp.first + edge[i].w );
			else if( tmp.second != -1 )
					result = min( result, ans - tmp.second + edge[i].w );
		}
	printf( "%lld\n", result );
	return 0;
}

最小生成树计数

luoguP4208 [JSOI2008]最小生成树计数

最小生成树性质5 : 若 T 1 , T 2 T_1,T_2 T1,T2都是最小生成树,则 T 1 , T 2 T_1,T_2 T1,T2的各边权是相同的(可能连接的边不同),换言之,若边权各不相同,则最小生成树唯一

这个模板题,相同权值边不超过 10 10 10条,完全符合爆搜的条件

先随便求一个最小生成树,然后记录每个权值使用的边数,然后爆搜使用哪几条该权值的边,同样不会出现环的情况

用矩阵原理乘起来即可

当然可以用矩阵树定理,但这明显串台了

#include <cstdio>
#include <algorithm>
using namespace std;
#define mod 31011
#define maxn 1005
struct node { int u, v, w; }E[maxn];
struct noded { int l, r, w, used; }G[maxn];
int n, m, cnt, tot, ans;
int f[maxn];

int find( int x ) { return x == f[x] ? x : find( f[x] ); }

void dfs( int End, int now, int used, int need ) {
	if( now == End ) {
		if( used == need ) tot ++;
		return;
	}
	int u = E[now].u, v = E[now].v;
	int fu = find( u ), fv = find( v );
	if( fu ^ fv ) {
		f[fv] = fu;
		dfs( End, now + 1, used + 1, need );
		f[fu] = fu, f[fv] = fv;
	}
	dfs( End, now + 1, used, need );
}

int main() {
	scanf( "%d %d", &n, &m );
	for( int i = 1, u, v, w;i <= m;i ++ ) {
		scanf( "%d %d %d", &u, &v, &w );
		E[i] = { u, v, w };
	}
	sort( E + 1, E + m + 1, []( node x, node y ) { return x.w < y.w; } );
	for( int i = 1;i <= n;i ++ ) f[i] = i;
	for( int i = 1;i <= m;i ++ ) {
		int u = E[i].u, v = E[i].v, w = E[i].w;
		if( w ^ E[i - 1].w ) {
			G[cnt].r = i - 1;
			G[++ cnt].l = i;
			G[cnt].w = w;
		}
		int fu = find( u ), fv = find( v );
		if( fu ^ fv ) {
			f[fv] = fu;
			G[cnt].used ++;
			tot ++;
		}
	}
	if( tot != n - 1 ) return ! printf( "0\n" );
	for( int i = 1;i <= n;i ++ ) f[i] = i;
	ans = 1; G[cnt].r = m;
	for( int i = 1;i <= cnt;i ++ ) {
		tot = 0;
		dfs( G[i].r + 1, G[i].l, 0, G[i].used );
		ans = ans * tot % mod;
		for( int j = G[i].l;j <= G[i].r;j ++ ) {
			int u = E[j].u, v = E[j].v;
			int fu = find( u ), fv = find( v );
			if( fu ^ fv ) f[fv] = fu;
		}
	}
	printf( "%lld\n", ans );
	return 0;
}

最优比率生成树

POJ Desert King

最优比率生成树类似最短路的 0 / 1 0/1 0/1分数规划

k = ∑ E i benefit[i] ∑ E i cost[i] k=\frac{\sum_{E_i}\text{benefit[i]}}{\sum_{E_i}\text{cost[i]}} k=Eicost[i]Eibenefit[i],则 ∑ E i benefit[i] ≥ k ∗ ∑ E i cost[i] \sum_{E_i}\text{benefit[i]}\ge k*\sum_{E_i}\text{cost[i]} Eibenefit[i]kEicost[i]

即, ∑ E i ( benefit[i]-k*cost[i] ) ≥ 0 \sum_{E_i}(\text{benefit[i]-k*cost[i]})\ge 0 Ei(benefit[i]-k*cost[i])0

显然这是具有单调性,最优比率就是 k k k

直接二分最优比率,然后重新定义每条边的边权为 benefit[i]-k*cost[i] \text{benefit[i]-k*cost[i]} benefit[i]-k*cost[i]

再求个最小生成树的边权和,如果 ≥ 0 \ge 0 0证明这个比率是可取的,且有可能更高

否则就下调二分的比率

#include <cstdio>
#include <cmath>
#include <iostream>
using namespace std;
#define maxn 1005
#define eps 1e-5
int n;
double x[maxn], y[maxn], h[maxn], w[maxn];
double dist[maxn][maxn], cost[maxn][maxn];
bool vis[maxn];

bool check( double x ) {
	for( int i = 0;i <= n;i ++ ) vis[i] = 0, w[i] = 1e18;
	w[1] = 0; double ans = 0;
	for( int k = 1;k <= n;k ++ ) {
		int now = 0;
		for( int i = 1;i <= n;i ++ )
			if( ! vis[i] and w[i] < w[now] ) now = i;
		if( ! now ) break;
		else vis[now] = 1;
		ans += w[now];
		for( int i = 1;i <= n;i ++ )
			w[i] = min( w[i], cost[now][i] - x * dist[now][i] );
	}
	return ans >= 0;
}

int main() {
	while( scanf( "%d", &n ) and n ) {
		for( int i = 1;i <= n;i ++ )
			scanf( "%lf %lf %lf", &x[i], &y[i], &h[i] );
		for( int i = 1;i <= n;i ++ )
			for( int j = i + 1;j <= n;j ++ ) {
				dist[i][j] = dist[j][i] = sqrt( ( x[i] - x[j] ) * ( x[i] - x[j] ) + ( y[i] - y[j] ) * ( y[i] - y[j] ) );
				cost[i][j] = cost[j][i] = fabs( h[i] - h[j] );
			}
		double l = 0, r = 1e7;
		while( r - l > eps ) {
			double mid = ( l + r ) / 2;
			if( check( mid ) ) l = mid;
			else r = mid;
		}
		printf( "%.3f\n", l );
	}
	return 0;
}

最小乘积生成树

luoguP5540 [BalkanOI2011] timeismoney | 最小乘积生成树

最优比率生成树是 ∑ E i benefit[i] ∑ E i cost[i] \frac{\sum_{E_i}\text{benefit[i]}}{\sum_{E_i}\text{cost[i]}} Eicost[i]Eibenefit[i]最大的最小生成树

而最小乘积生成树是 ∑ E i benefit[i] ∗ ∑ E i cost[i] \sum_{E_i}\text{benefit[i]}*\sum_{E_i}\text{cost[i]} Eibenefit[i]Eicost[i]的最小值的最小生成树

对于这种模型,我们选择放到二维平面上考虑

即, ∑ E i benefit[i] \sum_{E_i}\text{benefit[i]} Eibenefit[i]为横坐标, ∑ E i cost[i] \sum_{E_i}\text{cost[i]} Eicost[i]为纵坐标

那么这个点的横纵坐标积就是这个乘积生成树的价值了

所以我们需要想办法使得这个积越小越好

先找出两个特殊的乘积生成树,一个是横坐标最小的点,一个是纵坐标最小的点

将这两个点连线,显然在这条线的左下方的点的积更小

在这里插入图片描述

怎么找C?

利用计算机几何用叉积进行判定,显然 A B ⃗ × A C ⃗ < 0 \vec{AB}\times \vec{AC}<0 AB ×AC <0证明 C C C A B AB AB的左下角
A B ⃗ × A C ⃗ = ( X B − X A , Y B − Y A ) × ( X C − X A , Y C − Y A ) \vec{AB}\times \vec{AC}=(X_B-X_A,Y_B-Y_A)\times (X_C-X_A,Y_C-Y_A) AB ×AC =(XBXA,YBYA)×(XCXA,YCYA) = ( X B − X A ) ( Y C − Y A ) − ( Y B − Y A ) ( X C − X A ) =(X_B-X_A)(Y_C-Y_A)-(Y_B-Y_A)(X_C-X_A) =(XBXA)(YCYA)(YBYA)(XCXA) = ( X B − X A ) Y C + ( Y A − Y B ) X C − ( X B − X A ) Y A + ( Y B − Y A ) X A =(X_B-X_A)Y_C+(Y_A-Y_B)X_C-(X_B-X_A)Y_A+(Y_B-Y_A)X_A =(XBXA)YC+(YAYB)XC(XBXA)YA+(YBYA)XA
发现后面两项是常数项,我们想尽可能地寻找到左下角最远的最小积 C C C也就是说需要最小化 ( X B − X A ) Y C + ( Y A − Y B ) X C (X_B-X_A)Y_C+(Y_A-Y_B)X_C (XBXA)YC+(YAYB)XC

把边权变成 ( X B − X A ) b [ i ] + ( Y A − Y B ) a [ i ] (X_B-X_A)b[i]+(Y_A-Y_B)a[i] (XBXA)b[i]+(YAYB)a[i]

然后求出最小生成树,最小生成树的边的 a a a值和就是新点的横坐标, b b b值和就是纵坐标了

#include <cstdio>
#include <algorithm>
using namespace std;
#define maxn 10005
#define int long long
#define inf 0x7f7f7f7f
struct point {
	int x, y;
	friend point operator - ( point s, point t ) { return { s.x - t.x, s.y - t.y }; }
	friend int cross( point s, point t ) { return s.x * t.y - s.y * t.x; }
}ans;
struct node {
	int u, v, a, b, w;
}E[maxn];
int n, m;
int f[maxn];

int find( int x ) { return f[x] == x ? x : f[x] = find( f[x] ); }

point kruskal() {
	point p = { 0, 0 };
	for( int i = 1, cnt = 0;i <= m;i ++ ) {
		int u = E[i].u, v = E[i].v;
		int fu = find( u ), fv = find( v );
		if( fu ^ fv ) {
			f[fv] = fu;
			p.x += E[i].a;
			p.y += E[i].b;
			cnt ++;
			if( cnt == n - 1 ) break;
		}
	}
	if( ans.x * ans.y > p.x * p.y or ( ans.x * ans.y == p.x * p.y and ans.x > p.x ) )
		ans = p;
	return p;
}

void solve( point A, point B ) {
	for( int i = 1;i <= m;i ++ )
		E[i].w = ( B.x - A.x ) * E[i].b + ( A.y - B.y ) * E[i].a;
	sort( E + 1, E + m + 1, []( node x, node y ) { return x.w < y.w; } );
	for( int i = 1;i <= n;i ++ ) f[i] = i;
	point C = kruskal();
	if( cross( B - A, C - A ) >= 0 ) return;
	solve( A, C ), solve( C, B );
}

signed main() {
	scanf( "%lld %lld", &n, &m );
	for( int i = 1, u, v, a, b;i <= m;i ++ ) {
		scanf( "%lld %lld %lld %lld", &u, &v, &a, &b );
		E[i] = { u + 1, v + 1, a, b };
	}
	ans = { inf, inf };
	sort( E + 1, E + m + 1, []( node x, node y ) { return x.a < y.a; } );
	for( int i = 1;i <= n;i ++ ) f[i] = i;
	point A = kruskal();
	sort( E + 1, E + m + 1, []( node x, node y ) { return x.b < y.b; } );
	for( int i = 1;i <= n;i ++ ) f[i] = i;
	point B = kruskal();
	solve( A, B );
	printf( "%lld %lld\n", ans.x, ans.y );
	return 0;
} 

最小度限制生成树

luoguP5633

当限制某个物品恰好/至少/至多选 k k k个的限制性问题就是WQS二分解决的了

WQS二分,其实就是二分了一个新权重,赋加给与指定物品相关联的部分

再根据算法进行选择,最后判断是否达到了限制再调整权重,最后结果去除掉权重造成的影响即可

本题要求指定的某个点连的边恰好选择指定条数的最小生成树

那么就二分一个权重,加给所有指定点连接的特殊边,然后再跑最小生成树,记录下使用的特殊边的数量,再调整权重即可

#include <cstdio>
#include <algorithm>
using namespace std;
#define int long long
#define maxn 500005
const int inf = 1e9;
int n, m, s, k, cnt1, cnt2, cost;
struct node { int u, v, w; }G[maxn], O[maxn], E[maxn];
int f[maxn];

int find( int x ) { return x == f[x] ? x : f[x] = find( f[x] ); }

void msort( int x ) {
	for( int i = 1;i <= cnt1;i ++ ) G[i].w += x;
	int i = 1, j = 1, k = 1;
	while( i <= cnt1 and j <= cnt2 ) {
		if( O[j].w < G[i].w ) E[k ++] = O[j ++];
		else E[k ++] = G[i ++];
	}
	while( i <= cnt1 ) E[k ++] = G[i ++];
	while( j <= cnt2 ) E[k ++] = O[j ++];
	for( int i = 1;i <= cnt1;i ++ ) G[i].w -= x;
} 

bool check( int x ) {
	msort( x );
	for( int i = 1;i <= n;i ++ ) f[i] = i;
	int used = 0, cnt = 0;
	for( int i = 1;i <= m;i ++ ) {
		int u = E[i].u, v = E[i].v;
		int fu = find( u ), fv = find( v );
		if( fu ^ fv ) {
			f[fv] = fu, cnt ++, used += ( u == s or v == s );
			if( cnt == n - 1 ) break;
		}
	}
	return cnt == n - 1 and used >= k;
}

bool calc( int x ) {
	msort( x );
	for( int i = 1;i <= n;i ++ ) f[i] = i;
	int cnt = 0, used = 0;
	for( int i = 1;i <= m;i ++ ) {
		int u = E[i].u, v = E[i].v, w = E[i].w;
		int fu = find( u ), fv = find( v );
		if( fu ^ fv ) {
			f[fv] = fu, cnt ++, cost += w, used += ( u == s or v == s );
			if( cnt == n - 1 ) break;
		}
	}
	return cnt == n - 1 and used == k;
}

signed main() {
	scanf( "%lld %lld %lld %lld", &n, &m, &s, &k );
	for( int i = 1, u, v, w;i <= m;i ++ ) {
		scanf( "%lld %lld %lld", &u, &v, &w );
		if( u == s or v == s ) G[++ cnt1] = { u, v, w };
		else O[++ cnt2] = { u, v, w };	
	}
	sort( G + 1, G + cnt1 + 1, []( node x, node y ) { return x.w < y.w; } );
	sort( O + 1, O + cnt2 + 1, []( node x, node y ) { return x.w < y.w; } );
	int l = -inf, r = inf, ans = 1e18;
	while( l <= r ) {
		int mid = ( l + r ) >> 1;
		if( check( mid ) ) ans = mid, l = mid + 1;
		else r = mid - 1;
	}
	if( ans == 1e18 or ! calc( ans ) ) printf( "Impossible\n" );
	else printf( "%lld\n", cost - ans * k );
	return 0;
}

最小方差树

BZOJ Tree之最小方差树

方差其实与标准差是一样的

直接枚举一个假想的平均值 × ( n − 1 ) \times (n-1) ×(n1),即枚举总和

注意,此题不能枚举平均值,因为观察数据边权在 100 100 100内,然后精度又达到了四位浮点小数,直接平均值枚举丢精严重;因为显然我们只能枚举整数,而不是小数(那得到天荒地老,有精无时)

然后为了标准差小一点,肯定是选择边权与平均值越接近越好

一个小 t r i c k trick trick:将边权先排个序,然后根据枚举的边权平均值,将边分为左(权值小于枚举值)右(权值大于等于枚举值)的两类边,类似归并的左边(从后往前取),右边(从前往后取),选择最优的可选择的边

然后就可以算出真正的平均值,记录一下真正使用的最小生成树的边,就是个计算问题了

#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-6
#define maxn 105
#define maxm 2005
struct node { int u, v; double w; } E[maxm];
int n, m;
int f[maxn];
bool vis[maxm];

int find( int x ) { return f[x] == x ? x : f[x] = find( f[x] ); }

void merge( int id ) { f[find( E[id].v )] = find( E[id].u ); }

int main() {
	scanf( "%d %d", &n, &m );
	for( int i = 1;i <= m;i ++ ) {
		int u, v; double w;
		scanf( "%d %d %lf", &u, &v, &w );
		E[i] = { u, v, w }; 
	}
	sort( E + 1, E + m + 1, []( node x, node y ) { return x.w < y.w; } );
	double ans = 2e9;
	for( int k = 0, ip = 1;k <= ( n - 1 ) * 100;k ++ ) {
		while( ip <= m and E[ip].w * ( n - 1 ) < k ) ip ++;
		int l = ip - 1, r = ip;
		for( int i = 1;i <= n;i ++ ) f[i] = i;
		for( int i = 1;i <= m;i ++ ) vis[i] = 0;
		int cnt = 0; 
		double sum = 0;
		while( ++ cnt != n ) {
			while( l >= 1 and find( E[l].u ) == find( E[l].v ) ) l --;
			while( r <= m and find( E[r].u ) == find( E[r].v ) ) r ++;
			if( l >= 1 and r <= m ) {
				if( k - E[l].w * ( n - 1 ) < E[r].w * ( n - 1 ) - k ) 
					vis[l] = 1, sum += E[l].w, merge( l ), -- l;
				else 
					vis[r] = 1, sum += E[r].w, merge( r ), ++ r;
			}
			else if( l >= 1 ) vis[l] = 1, sum += E[l].w, merge( l ), -- l;
			else vis[r] = 1, sum += E[r].w, merge( r ), ++ r;
		}
		double ave = sum / ( n - 1 );
		double ret = 0;
		for( int i = 1;i <= m;i ++ ) 
			if( vis[i] ) ret += ( E[i].w - ave ) * ( E[i].w - ave );
		ans = min( ans, ret );
	}
	printf( "%.4f\n", sqrt( ans / ( n - 1 ) ) );
	return 0;
} 
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值