最小生成树详解+经典例题

本文详细介绍了最小生成树的概念,重点讲述了Kruskal算法的步骤和模板,并列举了多个经典例题,包括HDU - 1863、POJ - 1251等,每个例题都有相应的分析和解决方案,主要应用于解决图论问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最小生成树:

1、定义

将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树。

2、算法:Kruskal 算法 和 Prime 算法;

3、这里给出Kruskal算法模板:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node{
   
	int x,y;//树一条边的起点和终点;
	int w;// 边权(边的价值或大小)
}a[110];
int pre[110];//每个点的信息; 并查集所用;
bool cmp(struct node a,struct node b)
{
   
	return a.w<b.w;
}
int find(int root)// 查找函数(并查集)
{
   
	if(root!=pre[root]) root=find(pre[root]);
	return pre[root];
}
int main()
{
   
	int n,i,m;
	while(scanf("%d %d",&n,&m),n)
	{
   
		memset(pre,0,sizeof(pre));
		int sum=0,num=0;
		for(i=1;i<=m;i++) scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].w);//输入各个边的起点、终点和权值;
		sort(a+1,a+1+m,cmp);// 对各个边进行排序;
		for(i=1;i<=n;i++) pre[i]=i;
		for(i=1;i<=m;i++)// 从小到大开始枚举测试边;用并查集判断是否构成环; 不构成则加入;
		{
   
			int f1=find(a[i].x);
			int f2=find(a[i].y);
			if(f1!=f2)
			{
   
				pre[f1]=f2;
				sum+=a[i].w;//存储最小的边权和;
				num++;
			}
			if(num==n-1) break;// 满足树的性质; 边的条数==点的个数-1;
		}
		if(num==n-1)//判断是否存在;
		printf("%d\n",sum);
		else printf("?\n");
	}
	return 0;
}

4、总的来说 Kruskal 算法的步骤:

a、二维数组或结构体或者邻接表存储边权信息;
b、对边进行排序;
c、从小到大枚举测试每条边;
d、判断是否构成最小生成树;

5、经典例题:

1、畅通工程–HDU - 1863

传送门

分析:裸题-----直接套模板
代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node{
   
	int x,y,w;
}a[110];
int pre[110];
int find(int root)
{
   
	if(root!=pre[root]) root=find(pre[root]);
	return pre[root];
}
bool cmp(node a,node b)
{
   
	return a.w<b.w;
}
int main()
{
   
	int n,m;
	while(scanf("%d%d",&m,&n),m)
	{
   
		int sum=0,num=0;
		memset(pre,0,sizeof(pre));
		for(int i=1;i<=n;i++) pre[i]=i;
		for(int i=1;i<=m;i++) 
		scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].w);
		sort(a+1,a+1+m,cmp);
		for(int i=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值