最小生成树:
1、定义
将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树。
2、算法:Kruskal 算法 和 Prime 算法;
3、这里给出Kruskal算法模板:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node{
int x,y;//树一条边的起点和终点;
int w;// 边权(边的价值或大小)
}a[110];
int pre[110];//每个点的信息; 并查集所用;
bool cmp(struct node a,struct node b)
{
return a.w<b.w;
}
int find(int root)// 查找函数(并查集)
{
if(root!=pre[root]) root=find(pre[root]);
return pre[root];
}
int main()
{
int n,i,m;
while(scanf("%d %d",&n,&m),n)
{
memset(pre,0,sizeof(pre));
int sum=0,num=0;
for(i=1;i<=m;i++) scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].w);//输入各个边的起点、终点和权值;
sort(a+1,a+1+m,cmp);// 对各个边进行排序;
for(i=1;i<=n;i++) pre[i]=i;
for(i=1;i<=m;i++)// 从小到大开始枚举测试边;用并查集判断是否构成环; 不构成则加入;
{
int f1=find(a[i].x);
int f2=find(a[i].y);
if(f1!=f2)
{
pre[f1]=f2;
sum+=a[i].w;//存储最小的边权和;
num++;
}
if(num==n-1) break;// 满足树的性质; 边的条数==点的个数-1;
}
if(num==n-1)//判断是否存在;
printf("%d\n",sum);
else printf("?\n");
}
return 0;
}
4、总的来说 Kruskal 算法的步骤:
a、二维数组或结构体或者邻接表存储边权信息;
b、对边进行排序;
c、从小到大枚举测试每条边;
d、判断是否构成最小生成树;
5、经典例题:
1、畅通工程–HDU - 1863
分析:裸题-----直接套模板
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node{
int x,y,w;
}a[110];
int pre[110];
int find(int root)
{
if(root!=pre[root]) root=find(pre[root]);
return pre[root];
}
bool cmp(node a,node b)
{
return a.w<b.w;
}
int main()
{
int n,m;
while(scanf("%d%d",&m,&n),m)
{
int sum=0,num=0;
memset(pre,0,sizeof(pre));
for(int i=1;i<=n;i++) pre[i]=i;
for(int i=1;i<=m;i++)
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].w);
sort(a+1,a+1+m,cmp);
for(int i=