【无码专区13】最小公倍数(线段树)

因为只有std,没有自我实现,所以是无码专区

主要是为了训练思维能力

my idea顾名思义,记录了我的整个思维过程,以及自己部分实现细节口胡,还有期望分数

solution才是dls正解,但是因为只有潦草几句,所以大部分会有我自己基于正解上面的算法实现过程,可能选择的算法跟std中dls的实现不太一样。

std可能也会带有博主自己的注释。


problem

n n n 个数,其表示为 2 a i ⋅ 3 b i 2^{a_i}·3^{b_i} 2ai3bi,给定 a i , b i a_i,b_i ai,bi

对于所有的非空子集,求出它们的最小公倍数,并求和。

答案对 1 e 9 + 7 1e9+7 1e9+7 取模。

测试点编号 n ≤ n\le n a i , b i ≤ a_i,b_i\le ai,bi
1 − 2 1-2 12 20 20 20 1 0 9 10^9 109
3 − 4 3-4 34 1 0 3 10^3 103 1 0 9 10^9 109
5 − 6 5-6 56 1 0 5 10^5 105 1 0 3 10^3 103
7 − 10 7-10 710 1 0 5 10^5 105 1 0 9 10^9 109

my idea

读完题就直接思考具有特殊性质的数据点,因为往往这种数据点的算法就是正解最朴素的原始样子。有价值的题都会这么设计部分分。某些毒瘤题呃呃呃

n ≤ 1 0 3 n\le 10^3 n103 应该是与 n 2 n^2 n2 挂钩的算法。

大概是枚举子集的最小值和最大值,强制入选,然后二维数点中间所有可以选择的数。为了避免算重,相同值的点还得强制规定一个大小,比如编号。

a i , b i ≤ 1 0 3 a_i,b_i\le 10^3 ai,bi103 本质上与上面差不多。

只不过是从因子的幂次角度入手枚举。

枚举最大值的 a , b a,b a,b,二维数点所有 a i ≤ a , b i ≤ b a_i\le a,b_i\le b aia,bib 的点,考虑是否选择。

同样为了避免算重,也得规定第三排序法则。

以上只是粗略的想法,并未细想。因为这个时候发现上面的做法其实是可以做正解的。

2 a , 3 b 2^a,3^b 2a,3b 是相互独立的,可分开计算。

将所有数按 a a a 幂次大小升序排序后。

考虑枚举第 i i i 个数的 a a a 作为最小公倍数的 a a a

显然,子集内的其余元素只能从 1 ≤ j < i 1\le j<i 1j<i 里面选。

b b b 建立权值线段树,维护元素个数。

为了去重,强制枚举的数必选,那么最小公倍数 b b b 的至少是 b i b_i bi

直接线段树上查一段区间作为作为最小公倍数 b b b 的答案。

具体而言:

线段树的叶子节点 x x x 维护的是 b j ≤ x , 1 ≤ j < i b_j\le x,1\le j<i bjx,1j<i j j j 的个数,假设为 c c c 个。

一个叶子节点如果是最后选的子集数的最小公倍数的 b b b 的话。

那么可能的子集为 2 c − 1 2^{c-1} 2c1 个, − 1 -1 1 是因为必须要求 b j = x b_j=x bj=x j j j 中强制被选一个,这样才会有 b j b_j bj,否则会假掉。

一个点对答案的贡献就是 2 c − 1 ∗ x 2^{c-1}*x 2c1x,此时必须保证有至少一个 b j = x b_j=x bj=x 才行。

所以一个点还要维护一个标记 f f f,表示是否有至少一个 j j j 满足 b j = x b_j=x bj=x

那么一个点对答案的贡献应该是 2 c − 1 ∗ x ∗ f 2^{c-1}*x*f 2c1xf

对于枚举的 i i i 而言,算出来的贡献为 2 a i ∗ 2^{a_i}* 2ai 线段树查询区间 [ b j , M a x B ] [b_j,MaxB] [bj,MaxB]

注意到,这个形式意味着还要对 b b b 进行离散化处理。

因为 i i i 能让 b i b_i bi 的线段树对应节点 f = 1 f=1 f=1,而这之前可能是 f = 0 f=0 f=0

所以要先修改再查询。

修改根据节点维护信息,对应的应是区间修改 [ 1 , b i ] [1,b_i] [1,bi],且特殊的, b i b_i bi f f f 要置为 1 1 1

所以可以拆成区间修改 [ 1 , b i ) [1,b_i) [1,bi) 和单点修改 b i b_i bi

懒标记一旦增加,相当于是多了一个个数,幂次 + 1 +1 +1,拆出来变成外部 × 2 \times 2 ×2

2 l a z y ⋅ ( 2 c 1 ∗ x 1 ∗ f 1 + 2 c 2 ∗ x 2 ∗ f 2 + . . . + ) 2^{lazy}·(2^{c_1}*x_1*f_1+2^{c_2}*x_2*f_2+...+) 2lazy(2c1x1f1+2c2x2f2+...+)

时间复杂度为 O ( n log ⁡ n ) O(n\log n) O(nlogn)


solution

首先不妨设 a i , b i a_i,b_i ai,bi 两两不同。

考虑枚举集合中 b i b_i bi 最大的元素,将所有 b j < b i b_j<b_i bj<bi 的元素按 a j a_j aj 从小到大排序。

不妨记作 a 1 ′ , a 2 ′ , . . . , a i − 1 ′ a_1',a_2',...,a_{i-1}' a1,a2,...,ai1,那么会有 2 i − 1 2^{i-1} 2i1 个子集,最大值是 a i − 1 ′ a_{i-1}' ai1

考虑将 a i a_i ai 加入后,所有最大值 < a i <a_i <ai 的子集,最大值都变成了 a i a_i ai,剩下的子集不变。

a i a_i ai 加入到上面的有序序列后,所有比 a i a_i ai 大的元素排名都会 + 1 +1 +1,对应的子集个数会翻倍。

问题等价于区间乘 2 2 2 以及区间求和,线段树维护。

就是my idea类似的思想,yeah我做出来了!


std

#include <bits/stdc++.h>
#define ls(x) (x << 1)
#define rs(x) ((x << 1) | 1)
#define LL long long
using namespace std;
const int maxn = 100010;
const LL mod = 1000000007;

struct node {
	int x, y, rank;
};

bool cmp1(node x, node y) {
	return x.x == y.x ? x.y < y.y : x.x < y.x;
}

bool cmp2(node x, node y) {
	return x.y == y.y ? x.x < y.x : x.y < y.y;
}
node a[maxn];

struct SegementTree {
	LL sum, cnt, lz;
};
SegementTree tr[maxn * 4];

LL qpow(LL x, LL y) {
	LL ans = 1;
	for (; y; y >>= 1) {
		if (y & 1)
			ans = (ans * x) % mod;
		x = (x * x) % mod;
	}
	return ans;
}

void pushup(int x) {
	tr[x].sum = (tr[ls(x)].sum + tr[rs(x)].sum) % mod;
	tr[x].cnt = (tr[ls(x)].cnt + tr[rs(x)].cnt) % mod;
}

void maintain(int x, int y) {
	tr[x].sum = (tr[x].sum * qpow(2, y)) % mod;
	tr[x].lz += y;
}

void pushdown(int x) {
	if (tr[x].lz) {
		if (tr[ls(x)].cnt)
			maintain(ls(x), tr[x].lz);
		if (tr[rs(x)].cnt)
			maintain(rs(x), tr[x].lz);
		tr[x].lz = 0;
	}
}

void build(int x, int l, int r) {
	if (l == r) {
		tr[x].sum = tr[x].cnt = 0;
		return;
	}
	int mid = (l + r) >> 1;
	build(ls(x), l, mid);
	build(rs(x), mid + 1, r);
	pushup(x);
}

void update_cnt(int x, int l, int r, int pos, int y, int z) {
	if (l == r) {
		tr[x].cnt = 1;
		tr[x].sum = (qpow(2, y) * qpow(2, z)) % mod;
		return;
	}
	pushdown(x);
	int mid = (l + r) >> 1;
	if (pos <= mid)
		update_cnt(ls(x), l, mid, pos, y, z);
	else
		update_cnt(rs(x), mid + 1, r, pos, y, z);
	pushup(x);
}

void update_sum(int x, int l, int r, int ql, int qr) {
	if (l >= ql && r <= qr) {
		tr[x].lz++;
		tr[x].sum = (tr[x].sum * 2) % mod;
		return;
	}
	pushdown(x);
	int mid = (l + r) >> 1;
	if (ql <= mid)
		update_sum(ls(x), l, mid, ql, qr);
	if (qr > mid)
		update_sum(rs(x), mid + 1, r, ql, qr);
	pushup(x);
}

LL query_cnt(int x, int l, int r, int ql, int qr) {
	if (l >= ql && r <= qr) {
		return tr[x].cnt;
	}
	int mid = (l + r) >> 1;
	pushdown(x);
	LL ans = 0;
	if (ql <= mid)
		ans += query_cnt(ls(x), l, mid, ql, qr);
	if (qr > mid)
		ans += query_cnt(rs(x), mid + 1, r, ql, qr);
	return ans;
}

LL query_sum(int x, int l, int r, int ql, int qr) {
	if (l >= ql && r <= qr) {
		return tr[x].sum;
	}
	int mid = (l + r) >> 1;
	LL ans = 0;
	pushdown(x);
	if (ql <= mid)
		ans += query_sum(ls(x), l, mid, ql, qr);
	if (qr > mid)
		ans += query_sum(rs(x), mid + 1, r, ql, qr);
	return ans % mod;
}

int main() {
	freopen("lcm.in", "r", stdin);
	freopen("lcm.out", "w", stdout);
	int n;
	while (~scanf("%d", &n)) {
		for (int i = 1; i <= n; i++) {
			scanf("%d%d", &a[i].x, &a[i].y);
		}
		sort(a + 1, a + 1 + n, cmp1);
		for (int i = 1; i <= n; i++) {
			a[i].rank = i;
		}
		sort(a + 1, a + 1 + n, cmp2);
		build(1, 1, n);
		LL ans = 0;
		for (int i = 1; i <= n; i++) {
			LL tmp = query_cnt(1, 1, n, 1, a[i].rank);
			update_cnt(1, 1, n, a[i].rank, tmp, a[i].x);
			ans = (ans + query_sum(1, 1, n, a[i].rank, n) * qpow(3, a[i].y) % mod) % mod;
			if (a[i].rank != n)
				update_sum(1, 1, n, a[i].rank + 1, n);
		}
		printf("%lld\n", ans);
	}
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值