problem
solution
有个显然的暴力 d p dp dp。设 d p ( i , j ) : dp(i,j): dp(i,j): 到了第 i i i 个学校,其参加且派出 j j j 个划艇的方案数。
枚举上一个参加的学校以及派出的划艇,则有转移: d p ( i , j ) = ∑ k < i , j < j d p ( k , j ′ ) dp(i,j)=\sum_{k<i,j<j} dp(k,j') dp(i,j)=∑k<i,j<jdp(k,j′)。
可以再套个前缀和优化,但是由于第二维可以达到 1 e 9 1e9 1e9,并没有起到关键性优化。
实际上我们并不关系真的派出了多少个划艇,我们只在乎之间的满足的递增关系。
所以我们可以考虑离散化成 O ( 2 n ) O(2n) O(2n) 个端点。 [ a i , a i + 1 ) → i [a_i,a_{i+1})\rightarrow i [ai,ai+1)→i。
设 f ( i , j ) : f(i,j): f(i,j): 前 i i i 所学校中,第 i i i 所学校参赛,且派出的划艇数属于第 j j j 个区间内的方案数。
- Lemma : \text{Lemma}: Lemma: 从区间 [ 0 , L ] [0,L] [0,L] 中取 n n n 个数,要求所有非零数严格递增,方案数为 ( L + n n ) \binom {L+n}n (nL+n)。
Proof : \text{Proof}: Proof:
- 没有 0 0 0 的情况,答案肯定是 ( L n ) \binom Ln (nL)。因为如果确定了一种组合,那么方案也随之确定,即为这个组合的从小到大排列。所以这二者存在一一对应的关系。
- 有 0 0 0 。观察这个序列 0 0 0 ... 0 1 2 ... L \text{0 0 0 ... 0 1 2 ... L} 0 0 0 ... 0 1 2 ... L。考虑从中选 n n n 个数,取某个非零数 i i i 对应没取 0 0 0 的第 i i i 次选 i i i。
现在由于第 i i i 所学校必须参赛,所以计算的时候 0 0 0 的个数 − 1 -1 −1。方案数即 ( L + m − 1 m ) \binom{L+m-1}m (mL+m−1)。
其中 m m m 表示选划艇个数包含第 j j j 个区间的学校数量。
对于一个 k k k,对应方案数为 ( L + m − 1 m ) ∑ j ′ < j f ( k , j ′ ) \binom {L+m-1}m\sum_{j'<j}f(k,j') (mL+m−1)∑j′<jf(k,j′)。
所以 f ( i , j ) = ∑ k < i ( L + m − 1 m ) ∑ j ′ < j f ( k , j ‘ ) f(i,j)=\sum_{k<i}\binom{L+m-1}{m}\sum_{j'<j}f(k,j‘) f(i,j)=∑k<i(mL+m−1)∑j′<jf(k,j‘)。
此时再加前缀和优化, s u m ( k , j ) = ∑ j ′ < j f ( k , j ′ ) sum(k,j)=\sum_{j'<j}f(k,j') sum(k,j)=∑j′<jf(k,j′)。
则 f ( i , j ) = ∑ k < i ( L + m k − 1 m k ) s u m ( k , j ) f(i,j)=\sum_{k<i}\binom{L+m_k-1}{m_k}sum(k,j) f(i,j)=∑k<i(mkL+mk−1)sum(k,j)。
时间复杂度 O ( n 3 ) O(n^3) O(n3)。
code
#include <bits/stdc++.h>
using namespace std;
#define maxn 1005
#define int long long
#define mod 1000000007
int n;
int a[maxn], b[maxn], c[maxn], x[maxn], inv[maxn], sum[maxn];
signed main() {
scanf( "%lld", &n );
for( int i = 1;i <= n;i ++ ) {
scanf( "%lld %lld", &a[i], &b[i] );
x[i] = a[i], x[i + n] = b[i] + 1;
}
sort( x + 1, x + (n << 1 | 1) );
int m = unique( x + 1, x + (n << 1 | 1) ) - x - 1;
for( int i = 1;i <= n;i ++ ) {
a[i] = lower_bound( x + 1, x + m + 1, a[i] ) - x;
b[i] = lower_bound( x + 1, x + m + 1, b[i] + 1 ) - x;
}
sum[0] = c[0] = inv[1] = 1;
for( int i = 2;i <= n;i ++ ) inv[i] = (mod - mod / i) * inv[mod % i] % mod;
for( int j = 1;j < m;j ++ ) {
int len = x[j + 1] - x[j];
for( int i = 1;i <= n;i ++ ) c[i] = c[i - 1] * (i + len - 1) % mod * inv[i] % mod;//组合数下标不变 所以可以每一次j区间变化时再求
for( int i = n;i;i -- ) {//由于i与i-1及前面的挂钩所以不能从前往后更新
if( a[i] <= j and j + 1 <= b[i] ) {
int o = 1, fi = 0;
//o为满足条件的个数 由于是从后往前的枚举所以o单调递增 每碰到一个合法的k o就要+1
for( int k = i - 1;~ k;k -- ) {
fi = (fi + sum[k] * c[o]) % mod;
if( a[k] <= j and j + 1 <= b[k] ) o ++;
}
sum[i] = (sum[i] + fi) % mod;
}
}
}
int ans = 0;
for( int i = 1;i <= n;i ++ ) (ans += sum[i]) %= mod;
printf( "%lld\n", ans );
return 0;
}