【洛谷 P3643】【APIO2016】 划艇(DP)

传送门

看到满脑子都想的赛艇
E x c i t e d ! Excited! Excited

考虑离散化成一堆区间
f [ i ] [ j ] [ k ] f[i][j][k] f[i][j][k]表示前 i i i个,当前在第 j j j个区间,在第 j j j个区间的有 k k k个的方案数
然后在跳到下一个区间的时候再算 k k k个份分配在第 j j j个区间的方案
由于是递增的,所以系数为 ( l e n [ j ] k ) {len[j]\choose k} (klen[j])

那么有 f [ i ] [ j ] [ 1 ] = ∑ p < j , k > = 1 f [ i − 1 ] [ p ] [ k ] ∗ ( l e n [ p ] k ) f[i][j][1]=\sum_{p<j,k>=1}f[i-1][p][k]*{len[p]\choose k} f[i][j][1]=p<j,k>=1f[i1][p][k](klen[p])
f [ i ] [ j ] [ k ] = f [ i − 1 ] [ j ] [ k − 1 ] f[i][j][k]=f[i-1][j][k-1] f[i][j][k]=f[i1][j][k1]

前缀和优化即可做到 O ( n 3 ) O(n^3) O(n3)

#include<bits/stdc++.h>
using namespace std;
#define cs const
#define re register
#define pb push_back
#define pii pair<int,int>
#define ll long long
#define fi first
#define se second
#define bg begin
cs int RLEN=1<<20|1;
inline char gc(){
    static char ibuf[RLEN],*ib,*ob;
    (ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    return (ib==ob)?EOF:*ib++;
}
inline int read(){
    char ch=gc();
    int res=0;bool f=1;
    while(!isdigit(ch))f^=ch=='-',ch=gc();
    while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
    return f?res:-res;
}
template<class tp>inline void chemx(tp &a,tp b){a<b?a=b:0;}
template<class tp>inline void chemn(tp &a,tp b){a>b?a=b:0;}
cs int mod=1e9+7;
inline int add(int a,int b){return (a+=b)>=mod?(a-mod):a;}
inline int dec(int a,int b){a-=b;return a+(a>>31&mod);}
inline int mul(int a,int b){static ll r;r=1ll*a*b;return (r>=mod)?(r%mod):r;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline void Dec(int &a,int b){a-=b,a+=a>>31&mod;}
inline void Mul(int &a,int b){static ll r;r=1ll*a*b;a=(r>=mod)?(r%mod):r;}
inline int ksm(int a,int b,int res=1){for(;b;b>>=1,Mul(a,a))(b&1)&&(Mul(res,a),1);return res;}
inline int Inv(int x){return ksm(x,mod-2);}
inline int fix(int x){return (x<0)?x+mod:x;}
cs int N=505;
int f[N*2][N],s[N*2];
int C[N*2][N],len[N*2];
int a[N],b[N],c[N*2],iv[N];
int n,m;
int main(){
	#ifdef Stargazer
	freopen("lx.in","r",stdin);
	#endif
	n=read();
	iv[0]=iv[1]=1;
	for(int i=2;i<=n;i++)iv[i]=mul(mod-mod/i,iv[mod%i]);
	for(int i=1;i<=n;i++)a[i]=read(),b[i]=read(),c[++m]=a[i],c[++m]=b[i]+1;
	sort(c+1,c+m+1),m=unique(c+1,c+m+1)-c-1;
	for(int i=1;i<=n;i++)a[i]=lower_bound(c+1,c+m+1,a[i])-c,b[i]=upper_bound(c+1,c+m+1,b[i])-c-1;
	m--;
	for(int i=1;i<=m;i++){
		len[i]=c[i+1]-c[i];
		C[i][0]=1,C[i][1]=len[i];
		for(int j=2;j<=n;j++)C[i][j]=mul(C[i][j-1],mul(len[i]-j+1,iv[j]));
	}
	for(int i=1;i<=n;i++){
		for(int j=a[i];j<=b[i];j++){
			for(int k=i;k>=2;k--)Add(f[j][k],f[j][k-1]);
			Add(f[j][1],s[j-1]+1);
		}
		memset(s,0,sizeof(s));
		for(int j=1;j<=m;j++)
		for(int k=1;k<=i;k++)Add(s[j],mul(f[j][k],C[j][k]));
		for(int j=1;j<=m;j++)Add(s[j],s[j-1]);
	}
	int res=0;
	for(int j=1;j<=m;j++)
	for(int k=1;k<=n;k++)
	Add(res,mul(f[j][k],C[j][k]));//,cout<<j<<" "<<k<<" "<<f[j][k]*C[j][k]<<'\n';
	cout<<res<<'\n';
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值