暴力分就不说了,直接无脑枚举头和尾,讲一下正解。
首先这种求最值问题不难想到二分,然后观察数据需要O(n)的验证。思考如何暴力验证,定义个前缀和数组sum[],那么我们就是要找到满足sum[r] - sum[l] >= x * (r - l) 并且L <= r - l <= R,观察发现我们将a[i]全部减去x,重新求sum数组,就等同于求取满足sum[r] - sum[l] >= 0并且L <= r - l <= R的r和l,我们枚举右端点r,那么可行的l为(r - R ~ r - L),我们只需要判断这个区间中的sum的最小值是否比sum[r]小即可,那么我们相当于要求一段长度固定的区间中的最小值,并且需要移动区间加入下一个位置或者去掉上一个位置,这个不就是标准的单调队列了吗,直接扫一遍就可以判断了,所以算法就是二分枚举x,利用单调队列判断是否可行,复杂度为O(nlogn)
代码
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int n,l,r,a[N],ll,rr,q[N];
double L,R,mid,sum[N];
bool check(double x)
{
memset(sum,0,sizeof(sum));
memset(q,0,sizeof(q));
for(int i=1;i<=n;i++) sum[i]=a[i]*1.0-x+sum[i-1];
ll=1,rr=0;
for(int i=l;i<=n;i++)
{
while(ll<=rr&&sum[i-l]<=sum[q[rr]]) rr--;
q[++rr]=i-l;
while(ll<=rr&&q[ll]+r<i) ll++;
if(sum[i]-sum[q[ll]]>=0) return true;
}
return false;
}
int main()
{
scanf("%d%d%d",&n,&l,&r);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
L=0,R=1e6;
for(int i=1;i<=100;i++)
{
mid=(L+R)/2;
if(check(mid)) L=mid;
else R=mid;
}
cout<<fixed<<setprecision(4)<<mid<<endl;
}