最佳序列(二分+单调队列) 9月12日NOIP训练T4

**Description**给一个长度为n的数组A,给定L;R,求所有满足长度大等于L,小等于R的A数组的子区间的平均值的最大值
暴力分就不说了,直接无脑枚举头和尾,讲一下正解。

首先这种求最值问题不难想到二分,然后观察数据需要O(n)的验证。思考如何暴力验证,定义个前缀和数组sum[],那么我们就是要找到满足sum[r] - sum[l] >= x * (r - l) 并且L <= r - l <= R,观察发现我们将a[i]全部减去x,重新求sum数组,就等同于求取满足sum[r] - sum[l] >= 0并且L <= r - l <= R的r和l,我们枚举右端点r,那么可行的l为(r - R ~ r - L),我们只需要判断这个区间中的sum的最小值是否比sum[r]小即可,那么我们相当于要求一段长度固定的区间中的最小值,并且需要移动区间加入下一个位置或者去掉上一个位置,这个不就是标准的单调队列了吗,直接扫一遍就可以判断了,所以算法就是二分枚举x,利用单调队列判断是否可行,复杂度为O(nlogn)

代码

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int n,l,r,a[N],ll,rr,q[N];
double L,R,mid,sum[N];
bool check(double x)
{
	memset(sum,0,sizeof(sum));
	memset(q,0,sizeof(q));
	for(int i=1;i<=n;i++) sum[i]=a[i]*1.0-x+sum[i-1];
	ll=1,rr=0;
	for(int i=l;i<=n;i++)
	{
		while(ll<=rr&&sum[i-l]<=sum[q[rr]]) rr--;
		q[++rr]=i-l;
		while(ll<=rr&&q[ll]+r<i) ll++;
		if(sum[i]-sum[q[ll]]>=0) return true;
	}
	return false;
} 
int main()
{
	scanf("%d%d%d",&n,&l,&r);
	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
	L=0,R=1e6;
	for(int i=1;i<=100;i++)
	{
		mid=(L+R)/2;
		if(check(mid)) L=mid;
		else R=mid;
	}
	cout<<fixed<<setprecision(4)<<mid<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值